Python聚類算法之DBSACN實(shí)例分析
本文實(shí)例講述了Python聚類算法之DBSACN。分享給大家供大家參考,具體如下:
DBSCAN:是一種簡單的,基于密度的聚類算法。本次實(shí)現(xiàn)中,DBSCAN使用了基于中心的方法。在基于中心的方法中,每個(gè)數(shù)據(jù)點(diǎn)的密度通過對(duì)以該點(diǎn)為中心以邊長為2*EPs的網(wǎng)格(鄰域)內(nèi)的其他數(shù)據(jù)點(diǎn)的個(gè)數(shù)來度量。根據(jù)數(shù)據(jù)點(diǎn)的密度分為三類點(diǎn):
核心點(diǎn):該點(diǎn)在鄰域內(nèi)的密度超過給定的閥值MinPs。
邊界點(diǎn):該點(diǎn)不是核心點(diǎn),但是其鄰域內(nèi)包含至少一個(gè)核心點(diǎn)。
噪音點(diǎn):不是核心點(diǎn),也不是邊界點(diǎn)。
有了以上對(duì)數(shù)據(jù)點(diǎn)的劃分,聚合可以這樣進(jìn)行:各個(gè)核心點(diǎn)與其鄰域內(nèi)的所有核心點(diǎn)放在同一個(gè)簇中,把邊界點(diǎn)跟其鄰域內(nèi)的某個(gè)核心點(diǎn)放在同一個(gè)簇中。
# scoding=utf-8 import pylab as pl from collections import defaultdict,Counter points = [[int(eachpoint.split("#")[0]), int(eachpoint.split("#")[1])] for eachpoint in open("points","r")] # 計(jì)算每個(gè)數(shù)據(jù)點(diǎn)相鄰的數(shù)據(jù)點(diǎn),鄰域定義為以該點(diǎn)為中心以邊長為2*EPs的網(wǎng)格 Eps = 10 surroundPoints = defaultdict(list) for idx1,point1 in enumerate(points): for idx2,point2 in enumerate(points): if (idx1 < idx2): if(abs(point1[0]-point2[0])<=Eps and abs(point1[1]-point2[1])<=Eps): surroundPoints[idx1].append(idx2) surroundPoints[idx2].append(idx1) # 定義鄰域內(nèi)相鄰的數(shù)據(jù)點(diǎn)的個(gè)數(shù)大于4的為核心點(diǎn) MinPts = 5 corePointIdx = [pointIdx for pointIdx,surPointIdxs in surroundPoints.iteritems() if len(surPointIdxs)>=MinPts] # 鄰域內(nèi)包含某個(gè)核心點(diǎn)的非核心點(diǎn),定義為邊界點(diǎn) borderPointIdx = [] for pointIdx,surPointIdxs in surroundPoints.iteritems(): if (pointIdx not in corePointIdx): for onesurPointIdx in surPointIdxs: if onesurPointIdx in corePointIdx: borderPointIdx.append(pointIdx) break # 噪音點(diǎn)既不是邊界點(diǎn)也不是核心點(diǎn) noisePointIdx = [pointIdx for pointIdx in range(len(points)) if pointIdx not in corePointIdx and pointIdx not in borderPointIdx] corePoint = [points[pointIdx] for pointIdx in corePointIdx] borderPoint = [points[pointIdx] for pointIdx in borderPointIdx] noisePoint = [points[pointIdx] for pointIdx in noisePointIdx] # pl.plot([eachpoint[0] for eachpoint in corePoint], [eachpoint[1] for eachpoint in corePoint], 'or') # pl.plot([eachpoint[0] for eachpoint in borderPoint], [eachpoint[1] for eachpoint in borderPoint], 'oy') # pl.plot([eachpoint[0] for eachpoint in noisePoint], [eachpoint[1] for eachpoint in noisePoint], 'ok') groups = [idx for idx in range(len(points))] # 各個(gè)核心點(diǎn)與其鄰域內(nèi)的所有核心點(diǎn)放在同一個(gè)簇中 for pointidx,surroundIdxs in surroundPoints.iteritems(): for oneSurroundIdx in surroundIdxs: if (pointidx in corePointIdx and oneSurroundIdx in corePointIdx and pointidx < oneSurroundIdx): for idx in range(len(groups)): if groups[idx] == groups[oneSurroundIdx]: groups[idx] = groups[pointidx] # 邊界點(diǎn)跟其鄰域內(nèi)的某個(gè)核心點(diǎn)放在同一個(gè)簇中 for pointidx,surroundIdxs in surroundPoints.iteritems(): for oneSurroundIdx in surroundIdxs: if (pointidx in borderPointIdx and oneSurroundIdx in corePointIdx): groups[pointidx] = groups[oneSurroundIdx] break # 取簇規(guī)模最大的5個(gè)簇 wantGroupNum = 3 finalGroup = Counter(groups).most_common(3) finalGroup = [onecount[0] for onecount in finalGroup] group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]] group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]] group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]] pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or') pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy') pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og') # 打印噪音點(diǎn),黑色 pl.plot([eachpoint[0] for eachpoint in noisePoint], [eachpoint[1] for eachpoint in noisePoint], 'ok') pl.show()
運(yùn)行效果截圖如下:
希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
相關(guān)文章
Windows10下Tensorflow2.0 安裝及環(huán)境配置教程(圖文)
這篇文章主要介紹了Windows10下Tensorflow2.0 安裝及環(huán)境配置教程(圖文),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-11-11Python實(shí)現(xiàn)批量上傳本地maven庫到nexus
這篇文章主要為大家詳細(xì)介紹了如何使用Python實(shí)現(xiàn)批量上傳本地maven庫到nexus,文中的示例代碼講解詳細(xì),具有一定的借鑒價(jià)值,需要的小伙伴可以參考下2024-01-01Python+樹莓派+YOLO打造一款人工智能照相機(jī)
今天,我們將自己動(dòng)手打造出一款基于深度學(xué)習(xí)的照相機(jī),當(dāng)小鳥出現(xiàn)在攝像頭畫面中時(shí),它將能檢測到小鳥并自動(dòng)進(jìn)行拍照2018-01-01pyCharm中python對(duì)象的自動(dòng)提示方式
這篇文章主要介紹了pyCharm中python對(duì)象的自動(dòng)提示方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-09-09Django獲取該數(shù)據(jù)的上一條和下一條方法
今天小編就為大家分享一篇Django獲取該數(shù)據(jù)的上一條和下一條方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-08-08Python 使用PIL numpy 實(shí)現(xiàn)拼接圖片的示例
今天小編就為大家分享一篇Python 使用PIL numpy 實(shí)現(xiàn)拼接圖片的示例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-05-05