欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python圖算法實(shí)例分析

 更新時(shí)間:2016年08月13日 10:57:14   作者:intergret  
這篇文章主要介紹了Python圖算法,結(jié)合實(shí)例形式詳細(xì)分析了Python數(shù)據(jù)結(jié)構(gòu)與算法中的圖算法實(shí)現(xiàn)技巧,需要的朋友可以參考下

本文實(shí)例講述了Python圖算法。分享給大家供大家參考,具體如下:

#encoding=utf-8
import networkx,heapq,sys
from matplotlib import pyplot
from collections import defaultdict,OrderedDict
from numpy import array
# Data in graphdata.txt:
# a b  4
# a h  8
# b c  8
# b h  11
# h i  7
# h g  1
# g i  6
# g f  2
# c f  4
# c i  2
# c d  7
# d f  14
# d e  9
# f e  10
def Edge(): return defaultdict(Edge)
class Graph:
  def __init__(self):
    self.Link = Edge()
    self.FileName = ''
    self.Separator = ''
  def MakeLink(self,filename,separator):
    self.FileName = filename
    self.Separator = separator
    graphfile = open(filename,'r')
    for line in graphfile:
      items = line.split(separator)
      self.Link[items[0]][items[1]] = int(items[2])
      self.Link[items[1]][items[0]] = int(items[2])
    graphfile.close()
  def LocalClusteringCoefficient(self,node):
    neighbors = self.Link[node]
    if len(neighbors) <= 1: return 0
    links = 0
    for j in neighbors:
      for k in neighbors:
        if j in self.Link[k]:
          links += 0.5
    return 2.0*links/(len(neighbors)*(len(neighbors)-1))
  def AverageClusteringCoefficient(self):
    total = 0.0
    for node in self.Link.keys():
      total += self.LocalClusteringCoefficient(node)
    return total/len(self.Link.keys())
  def DeepFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = self.Link[visit].keys() + todoList
    return visitedNodes
  def BreadthFirstSearch(self,start):
    visitedNodes = []
    todoList = [start]
    while todoList:
      visit = todoList.pop(0)
      if visit not in visitedNodes:
        visitedNodes.append(visit)
        todoList = todoList + self.Link[visit].keys()
    return visitedNodes
  def ListAllComponent(self):
    allComponent = []
    visited = {}
    for node in self.Link.iterkeys():
      if node not in visited:
        oneComponent = self.MakeComponent(node,visited)
        allComponent.append(oneComponent)
    return allComponent
  def CheckConnection(self,node1,node2):
    return True if node2 in self.MakeComponent(node1,{}) else False
  def MakeComponent(self,node,visited):
    visited[node] = True
    component = [node]
    for neighbor in self.Link[node]:
      if neighbor not in visited:
        component += self.MakeComponent(neighbor,visited)
    return component
  def MinimumSpanningTree_Kruskal(self,start):
    graphEdges = [line.strip('\n').split(self.Separator) for line in open(self.FileName,'r')]
    nodeSet = {}
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeSet[node] = idx
    edgeNumber = 0; totalEdgeNumber = len(nodeSet)-1
    for oneEdge in sorted(graphEdges,key=lambda x:int(x[2]),reverse=False):
      if edgeNumber == totalEdgeNumber: break
      nodeA,nodeB,cost = oneEdge
      if nodeA in nodeSet and nodeSet[nodeA] != nodeSet[nodeB]:
        nodeBSet = nodeSet[nodeB]
        for node in nodeSet.keys():
          if nodeSet[node] == nodeBSet:
            nodeSet[node] = nodeSet[nodeA]
        print nodeA,nodeB,cost
        edgeNumber += 1
  def MinimumSpanningTree_Prim(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromTreeSoFar = {}.fromkeys(expandNode,sys.maxint); distFromTreeSoFar[start] = 0
    linkToNode = {}.fromkeys(expandNode,'');linkToNode[start] = start
    while expandNode:
      # Find the closest dist node
      closestNode = ''; shortestdistance = sys.maxint;
      for node,dist in distFromTreeSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      print linkToNode[closestNode],closestNode,shortestdistance
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = self.Link[closestNode][neighbor]
        if recomputedist < distFromTreeSoFar[neighbor]:
          distFromTreeSoFar[neighbor] = recomputedist
          linkToNode[neighbor] = closestNode
  def ShortestPathOne2One(self,start,end):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          if neighbor == end:
            return pathFromStart[end]
          todoList.append(neighbor)
    return []
  def Centrality(self,node):
    path2All = self.ShortestPathOne2All(node)
    # The average of the distances of all the reachable nodes
    return float(sum([len(path)-1 for path in path2All.itervalues()]))/len(path2All)
  def SingleSourceShortestPath_Dijkstra(self,start):
    expandNode = set(self.MakeComponent(start,{}))
    distFromSourceSoFar = {}.fromkeys(expandNode,sys.maxint); distFromSourceSoFar[start] = 0
    while expandNode:
      # Find the closest dist node
      closestNode = ''; shortestdistance = sys.maxint;
      for node,dist in distFromSourceSoFar.iteritems():
        if node in expandNode and dist < shortestdistance:
          closestNode,shortestdistance = node,dist
      expandNode.remove(closestNode)
      for neighbor in self.Link[closestNode].iterkeys():
        recomputedist = distFromSourceSoFar[closestNode] + self.Link[closestNode][neighbor]
        if recomputedist < distFromSourceSoFar[neighbor]:
          distFromSourceSoFar[neighbor] = recomputedist
    for node in distFromSourceSoFar:
      print start,node,distFromSourceSoFar[node]
  def AllpairsShortestPaths_MatrixMultiplication(self,start):
    nodeIdx = {}; idxNode = {}; 
    for idx,node in enumerate(self.MakeComponent(start,{})):
      nodeIdx[node] = idx; idxNode[idx] = node
    matrixSize = len(nodeIdx)
    MaxInt = 1000
    nodeMatrix = array([[MaxInt]*matrixSize]*matrixSize)
    for node in nodeIdx.iterkeys():
      nodeMatrix[nodeIdx[node]][nodeIdx[node]] = 0
    for line in open(self.FileName,'r'):
      nodeA,nodeB,cost = line.strip('\n').split(self.Separator)
      if nodeA in nodeIdx:
        nodeMatrix[nodeIdx[nodeA]][nodeIdx[nodeB]] = int(cost)
        nodeMatrix[nodeIdx[nodeB]][nodeIdx[nodeA]] = int(cost)
    result = array([[0]*matrixSize]*matrixSize)
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        result[i][j] = nodeMatrix[i][j]
    for itertime in xrange(2,matrixSize):
      for i in xrange(matrixSize):
        for j in xrange(matrixSize):
          if i==j:
            result[i][j] = 0
            continue
          result[i][j] = MaxInt
          for k in xrange(matrixSize):
            result[i][j] = min(result[i][j],result[i][k]+nodeMatrix[k][j])
    for i in xrange(matrixSize):
      for j in xrange(matrixSize):
        if result[i][j] != MaxInt:
          print idxNode[i],idxNode[j],result[i][j]
  def ShortestPathOne2All(self,start):
    pathFromStart = {}
    pathFromStart[start] = [start]
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          todoList.append(neighbor)
    return pathFromStart
  def NDegreeNode(self,start,n):
    pathFromStart = {}
    pathFromStart[start] = [start]
    pathLenFromStart = {}
    pathLenFromStart[start] = 0
    todoList = [start]
    while todoList:
      current = todoList.pop(0)
      for neighbor in self.Link[current]:
        if neighbor not in pathFromStart:
          pathFromStart[neighbor] = pathFromStart[current] + [neighbor]
          pathLenFromStart[neighbor] = pathLenFromStart[current] + 1
          if pathLenFromStart[neighbor] <= n+1:
            todoList.append(neighbor)
    for node in pathFromStart.keys():
      if len(pathFromStart[node]) != n+1:
        del pathFromStart[node]
    return pathFromStart
  def Draw(self):
    G = networkx.Graph()
    nodes = self.Link.keys()
    edges = [(node,neighbor) for node in nodes for neighbor in self.Link[node]]
    G.add_edges_from(edges)
    networkx.draw(G)
    pyplot.show()
if __name__=='__main__':
  separator = '\t'
  filename = 'C:\\Users\\Administrator\\Desktop\\graphdata.txt'
  resultfilename = 'C:\\Users\\Administrator\\Desktop\\result.txt'
  myGraph = Graph()
  myGraph.MakeLink(filename,separator)
  print 'LocalClusteringCoefficient',myGraph.LocalClusteringCoefficient('a')
  print 'AverageClusteringCoefficient',myGraph.AverageClusteringCoefficient()
  print 'DeepFirstSearch',myGraph.DeepFirstSearch('a')
  print 'BreadthFirstSearch',myGraph.BreadthFirstSearch('a')
  print 'ShortestPathOne2One',myGraph.ShortestPathOne2One('a','d')
  print 'ShortestPathOne2All',myGraph.ShortestPathOne2All('a')
  print 'NDegreeNode',myGraph.NDegreeNode('a',3).keys()
  print 'ListAllComponent',myGraph.ListAllComponent()
  print 'CheckConnection',myGraph.CheckConnection('a','f')
  print 'Centrality',myGraph.Centrality('c')
  myGraph.MinimumSpanningTree_Kruskal('a')
  myGraph.AllpairsShortestPaths_MatrixMultiplication('a')
  myGraph.MinimumSpanningTree_Prim('a')
  myGraph.SingleSourceShortestPath_Dijkstra('a')
  # myGraph.Draw()

更多關(guān)于Python相關(guān)內(nèi)容可查看本站專(zhuān)題:《Python正則表達(dá)式用法總結(jié)》、《Python數(shù)據(jù)結(jié)構(gòu)與算法教程》、《Python Socket編程技巧總結(jié)》、《Python函數(shù)使用技巧總結(jié)》、《Python字符串操作技巧匯總》、《Python入門(mén)與進(jìn)階經(jīng)典教程》及《Python文件與目錄操作技巧匯總

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。

相關(guān)文章

  • 解決新django中的path不能使用正則表達(dá)式的問(wèn)題

    解決新django中的path不能使用正則表達(dá)式的問(wèn)題

    今天小編就為大家分享一篇解決新django中的path不能使用正則表達(dá)式的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2018-12-12
  • Python根據(jù)字符串調(diào)用函數(shù)過(guò)程解析

    Python根據(jù)字符串調(diào)用函數(shù)過(guò)程解析

    這篇文章主要介紹了Python根據(jù)字符串調(diào)用函數(shù)過(guò)程解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2020-11-11
  • tensorflow學(xué)習(xí)教程之文本分類(lèi)詳析

    tensorflow學(xué)習(xí)教程之文本分類(lèi)詳析

    初學(xué)tensorflow,借鑒了很多別人的經(jīng)驗(yàn),參考博客對(duì)評(píng)論分類(lèi)(感謝博主的一系列好文),本人也嘗試著實(shí)現(xiàn)了對(duì)文本數(shù)據(jù)的分類(lèi),下面這篇文章主要給大家介紹了關(guān)于tensorflow學(xué)習(xí)教程之文本分類(lèi)的相關(guān)資料,需要的朋友可以參考下
    2018-08-08
  • Pthon批量處理將pdb文件生成dssp文件

    Pthon批量處理將pdb文件生成dssp文件

    這篇文章主要介紹了Pthon批量處理將pdb文件生成dssp文件,通過(guò)本例主要學(xué)習(xí)遍歷目錄下文件的方法,需要的朋友可以參考下
    2015-06-06
  • 只用四步修改jupyter的工作路徑/存儲(chǔ)路徑

    只用四步修改jupyter的工作路徑/存儲(chǔ)路徑

    為了方便用戶使用以及減少系統(tǒng)盤(pán)的占用,可以將Jupyter的默認(rèn)工作路徑修改到電腦中常用的路徑中,這篇文章主要給大家介紹了關(guān)于如何只用四步修改jupyter的工作路徑/存儲(chǔ)路徑的相關(guān)資料,需要的朋友可以參考下
    2023-12-12
  • tensorflow中tf.reduce_mean函數(shù)的使用

    tensorflow中tf.reduce_mean函數(shù)的使用

    這篇文章主要介紹了tensorflow中tf.reduce_mean函數(shù)的使用,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-04-04
  • Python將QQ聊天記錄生成詞云的示例代碼

    Python將QQ聊天記錄生成詞云的示例代碼

    這篇文章主要介紹了Python將QQ聊天記錄生成詞云的示例代碼,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2021-02-02
  • 實(shí)現(xiàn)Python圖形界面框架TkInter寫(xiě)GUI界面應(yīng)用簡(jiǎn)介過(guò)程操作

    實(shí)現(xiàn)Python圖形界面框架TkInter寫(xiě)GUI界面應(yīng)用簡(jiǎn)介過(guò)程操作

    TkInter是Python用于開(kāi)發(fā)GUI界面的標(biāo)準(zhǔn)庫(kù),如果你想快速開(kāi)發(fā)一個(gè)帶有GUI界面的小工具(笑小程序),且又能同時(shí)在Linux、Windows、Mac上使用,TkInter天生支持跨平臺(tái),天生具備穩(wěn)定性,我認(rèn)為它能滿足內(nèi)部工具的簡(jiǎn)單需求
    2021-09-09
  • 學(xué)習(xí)python需要有編程基礎(chǔ)嗎

    學(xué)習(xí)python需要有編程基礎(chǔ)嗎

    在本篇文章里小編給大家分享的是一篇關(guān)于學(xué)習(xí)python有哪些必要條件,需要的朋友們可以學(xué)習(xí)下。
    2020-06-06
  • Python分支語(yǔ)句與循環(huán)語(yǔ)句應(yīng)用實(shí)例分析

    Python分支語(yǔ)句與循環(huán)語(yǔ)句應(yīng)用實(shí)例分析

    這篇文章主要介紹了Python分支語(yǔ)句與循環(huán)語(yǔ)句應(yīng)用,結(jié)合具體實(shí)例形式詳細(xì)分析了Python分支語(yǔ)句與循環(huán)語(yǔ)句各種常見(jiàn)應(yīng)用操作技巧與相關(guān)注意事項(xiàng),需要的朋友可以參考下
    2019-05-05

最新評(píng)論