欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python+OpenCV人臉識(shí)別考勤系統(tǒng)實(shí)現(xiàn)的詳細(xì)代碼

 更新時(shí)間:2023年05月22日 08:55:12   作者:A等天晴  
作為一個(gè)基于人臉識(shí)別算法的考勤系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)教程,以下內(nèi)容將提供詳細(xì)的步驟和代碼示例。本教程將使用 Python 語(yǔ)言和 OpenCV 庫(kù)進(jìn)行實(shí)現(xiàn),需要的朋友可以參考下

一、環(huán)境配置

  • 安裝 Python

請(qǐng)確保您已經(jīng)安裝了 Python 3.x??梢栽赑ython 官網(wǎng)下載并安裝。

  • 安裝所需庫(kù)

在命令提示符或終端中運(yùn)行以下命令來(lái)安裝所需的庫(kù):

pip install opencv-python
pip install opencv-contrib-python
pip install numpy
pip install face-recognition

二、創(chuàng)建數(shù)據(jù)集

  • 創(chuàng)建文件夾結(jié)構(gòu)

在項(xiàng)目目錄下創(chuàng)建如下文件夾結(jié)構(gòu):

attendance-system/
├── dataset/
│   ├── person1/
│   ├── person2/
│   └── ...
└── src/

將每個(gè)人的照片放入對(duì)應(yīng)的文件夾中,例如:

attendance-system/
├── dataset/
│   ├── person1/
│   │   ├── 01.jpg
│   │   ├── 02.jpg
│   │   └── ...
│   ├── person2/
│   │   ├── 01.jpg
│   │   ├── 02.jpg
│   │   └── ...
│   └── ...
└── src/

三、實(shí)現(xiàn)人臉識(shí)別算法

在 src 文件夾下創(chuàng)建一個(gè)名為 face_recognition.py 的文件,并添加以下代碼:

import os
import cv2
import face_recognition
import numpy as np

def load_images_from_folder(folder):
    images = []
    for filename in os.listdir(folder):
        img = cv2.imread(os.path.join(folder, filename))
        if img is not None:
            images.append(img)
    return images

def create_known_face_encodings(root_folder):
    known_face_encodings = []
    known_face_names = []
    for person_name in os.listdir(root_folder):
        person_folder = os.path.join(root_folder, person_name)
        images = load_images_from_folder(person_folder)
        for image in images:
            face_encoding = face_recognition.face_encodings(image)[0]
            known_face_encodings.append(face_encoding)
            known_face_names.append(person_name)
    return known_face_encodings, known_face_names

def recognize_faces_in_video(known_face_encodings, known_face_names):
    video_capture = cv2.VideoCapture(0)
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True

    while True:
        ret, frame = video_capture.read()
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        rgb_small_frame = small_frame[:, :, ::-1]

        if process_this_frame:
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

            face_names = []
            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"

                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]

                face_names.append(name)

        process_this_frame = not process_this_frame

        for (top, right, bottom, left), name in zip(face_locations, face_names):
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4

            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1)

        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    video_capture.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    dataset_folder = "../dataset/"
    known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder)
    recognize_faces_in_video(known_face_encodings, known_face_names)

四、實(shí)現(xiàn)考勤系統(tǒng)

在 src 文件夾下創(chuàng)建一個(gè)名為 attendance.py 的文件,并添加以下代碼:

import os
import datetime
import csv
from face_recognition import create_known_face_encodings, recognize_faces_in_video

def save_attendance(name):
    attendance_file = "../attendance/attendance.csv"
    now = datetime.datetime.now()
    date_string = now.strftime("%Y-%m-%d")
    time_string = now.strftime("%H:%M:%S")
    if not os.path.exists(attendance_file):
        with open(attendance_file, "w", newline="") as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(["Name", "Date", "Time"])
    with open(attendance_file, "r+", newline="") as csvfile:
        csv_reader = csv.reader(csvfile)
        rows = [row for row in csv_reader]
        for row in rows:
            if row[0] == name and row[1] == date_string:
                return
        csv_writer = csv.writer(csvfile)
        csv_writer.writerow([name, date_string, time_string])

def custom_recognize_faces_in_video(known_face_encodings, known_face_names):
    video_capture = cv2.VideoCapture(0)
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    while True:
        ret, frame = video_capture.read()
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        rgb_small_frame = small_frame[:, :, ::-1]

        if process_this_frame:
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
            face_names = []
            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
                    save_attendance(name)
                face_names.append(name)
        process_this_frame = not process_this_frame
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.8, (255, 255, 255), 1)

        cv2.imshow('Video', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    video_capture.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    dataset_folder = "../dataset/"
    known_face_encodings, known_face_names = create_known_face_encodings(dataset_folder)
    custom_recognize_faces_in_video(known_face_encodings, known_face_names)

五、運(yùn)行考勤系統(tǒng)

運(yùn)行 attendance.py 文件,系統(tǒng)將開(kāi)始識(shí)別并記錄考勤信息??记谟涗泴⒈4嬖?nbsp;attendance.csv 文件中。

python src/attendance.py

現(xiàn)在,您的基于人臉識(shí)別的考勤系統(tǒng)已經(jīng)實(shí)現(xiàn)。請(qǐng)注意,這是一個(gè)基本示例,您可能需要根據(jù)實(shí)際需求對(duì)其進(jìn)行優(yōu)化和擴(kuò)展。例如,您可以考慮添加更多的人臉識(shí)別算法、考勤規(guī)則等。

到此這篇關(guān)于python+OpenCV人臉識(shí)別考勤系統(tǒng)實(shí)現(xiàn)的詳細(xì)代碼的文章就介紹到這了,更多相關(guān)python OpenCV人臉識(shí)別考勤系統(tǒng)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • python中的__init__ 、__new__、__call__小結(jié)

    python中的__init__ 、__new__、__call__小結(jié)

    這篇文章主要介紹了python中的__init__ 、__new__、__call__小結(jié),需要的朋友可以參考下
    2014-04-04
  • 基于Pytorch實(shí)現(xiàn)邏輯回歸

    基于Pytorch實(shí)現(xiàn)邏輯回歸

    這篇文章主要為大家詳細(xì)介紹了基于Pytorch實(shí)現(xiàn)邏輯回歸,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2022-07-07
  • Python內(nèi)建類型str源碼學(xué)習(xí)

    Python內(nèi)建類型str源碼學(xué)習(xí)

    這篇文章主要為大家介紹了Python內(nèi)建類型str的源碼學(xué)習(xí),有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2022-05-05
  • Python使用cx_Freeze庫(kù)生成msi格式安裝文件的方法

    Python使用cx_Freeze庫(kù)生成msi格式安裝文件的方法

    這篇文章主要介紹了Python使用cx_Freeze庫(kù)生成msi格式安裝文件的方法,結(jié)合實(shí)例形式分析了Python基于cx_Freeze庫(kù)生成msi格式安裝文件操作技巧與相關(guān)問(wèn)題解決方法,需要的朋友可以參考下
    2018-07-07
  • 詳解如何使用SQLAlchemy連接數(shù)據(jù)庫(kù)

    詳解如何使用SQLAlchemy連接數(shù)據(jù)庫(kù)

    這篇文章主要為大家詳細(xì)介紹了如何使用 SQLAlchemy 連接數(shù)據(jù)庫(kù)、建立模型、操作表、以及查詢操作表數(shù)據(jù)等內(nèi)容,感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下
    2023-11-11
  • 最新評(píng)論