欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python史上最全種類(lèi)數(shù)據(jù)庫(kù)操作方法分享

 更新時(shí)間:2023年07月05日 14:59:48   作者:techlead_krischang  
本文將詳細(xì)探討如何在Python中連接全種類(lèi)數(shù)據(jù)庫(kù)以及實(shí)現(xiàn)相應(yīng)的CRUD(創(chuàng)建,讀取,更新,刪除)操作,文中的示例代碼講解詳細(xì),需要的可以參考一下

本文將詳細(xì)探討如何在Python中連接全種類(lèi)數(shù)據(jù)庫(kù)以及實(shí)現(xiàn)相應(yīng)的CRUD(創(chuàng)建,讀取,更新,刪除)操作。我們將逐一解析連接MySQL,SQL Server,Oracle,PostgreSQL,MongoDB,SQLite,DB2,Redis,Cassandra,Microsoft Access,ElasticSearch,Neo4j,InfluxDB,Snowflake,Amazon DynamoDB,Microsoft Azure CosMos DB數(shù)據(jù)庫(kù)的方法,并演示相應(yīng)的CRUD操作。

MySQL

連接數(shù)據(jù)庫(kù)

Python可以使用mysql-connector-python庫(kù)連接MySQL數(shù)據(jù)庫(kù):

import mysql.connector
conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
print("Opened MySQL database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在MySQL中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID INT PRIMARY KEY NOT NULL, NAME TEXT NOT NULL, AGE INT, ADDRESS CHAR(50), SALARY REAL)")
print("Table created successfully")
conn.close()

讀取(Retrieve)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

conn = mysql.connector.connect(user='username', password='password', host='127.0.0.1', database='my_database')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

SQL Server

連接數(shù)據(jù)庫(kù)

Python可以使用pyodbc庫(kù)連接SQL Server數(shù)據(jù)庫(kù):

import pyodbc
conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
print("Opened SQL Server database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在SQL Server中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID INT PRIMARY KEY NOT NULL, NAME VARCHAR(20) NOT NULL, AGE INT, ADDRESS CHAR(50), SALARY REAL)")
conn.commit()
print("Table created successfully")
conn.close()

讀?。≧etrieve)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

conn = pyodbc.connect('DRIVER={SQL Server};SERVER=localhost;DATABASE=my_database;UID=username;PWD=password')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

Oracle

連接數(shù)據(jù)庫(kù)

Python可以使用cx_Oracle庫(kù)連接Oracle數(shù)據(jù)庫(kù):

import cx_Oracle
dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
print("Opened Oracle database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在Oracle中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("CREATE TABLE Employees (ID NUMBER(10) NOT NULL PRIMARY KEY, NAME VARCHAR2(20) NOT NULL, AGE NUMBER(3), ADDRESS CHAR(50), SALARY NUMBER(10, 2))")
conn.commit()
print("Table created successfully")
conn.close()

讀?。≧etrieve)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

dsn_tns = cx_Oracle.makedsn('localhost', '1521', service_name='my_database') 
conn = cx_Oracle.connect(user='username', password='password', dsn=dsn_tns)
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

PostgreSQL

連接數(shù)據(jù)庫(kù)

Python可以使用psycopg2庫(kù)連接PostgreSQL數(shù)據(jù)庫(kù):

import psycopg2
conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
print("Opened PostgreSQL database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在PostgreSQL中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         REAL);''')
conn.commit()
print("Table created successfully")
conn.close()

讀?。≧etrieve)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

conn = psycopg2.connect(database="my_database", user="username", password="password", host="127.0.0.1", port="5432")
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

MongoDB

連接數(shù)據(jù)庫(kù)

Python可以使用pymongo庫(kù)連接MongoDB數(shù)據(jù)庫(kù):

from pymongo import MongoClient
client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
print("Opened MongoDB database successfully")
client.close()

CRUD操作

接下來(lái),我們將展示在MongoDB中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

在MongoDB中,文檔的創(chuàng)建操作通常包含在插入操作中:

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
employee = {"id": "1", "name": "John", "age": "30", "address": "New York", "salary": "1000.00"}
employees.insert_one(employee)
print("Document inserted successfully")
client.close()

讀?。≧etrieve)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
cursor = employees.find()
for document in cursor:
    print(document)
client.close()

更新(Update)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
query = { "id": "1" }
new_values = { "$set": { "salary": "25000.00" } }
employees.update_one(query, new_values)
print("Document updated successfully")
client.close()

刪除(Delete)

client = MongoClient("mongodb://localhost:27017/")
db = client["my_database"]
employees = db["Employees"]
query = { "id": "1" }
employees.delete_one(query)
print("Document deleted successfully")
client.close()

SQLite

連接數(shù)據(jù)庫(kù)

Python使用sqlite3庫(kù)連接SQLite數(shù)據(jù)庫(kù):

import sqlite3
conn = sqlite3.connect('my_database.db')
print("Opened SQLite database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在SQLite中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         REAL);''')
conn.commit()
print("Table created successfully")
conn.close()

讀?。≧etrieve)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

conn = sqlite3.connect('my_database.db')
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

DB2

連接數(shù)據(jù)庫(kù)

Python可以使用ibm_db庫(kù)連接DB2數(shù)據(jù)庫(kù):

import ibm_db
dsn = (
    "DRIVER={{IBM DB2 ODBC DRIVER}};"
    "DATABASE=my_database;"
    "HOSTNAME=127.0.0.1;"
    "PORT=50000;"
    "PROTOCOL=TCPIP;"
    "UID=username;"
    "PWD=password;"
)
conn = ibm_db.connect(dsn, "", "")
print("Opened DB2 database successfully")
ibm_db.close(conn)

CRUD操作

接下來(lái),我們將展示在DB2中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = ibm_db.connect(dsn, "", "")
sql = '''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           VARCHAR(20)    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         DECIMAL(9, 2));'''
stmt = ibm_db.exec_immediate(conn, sql)
print("Table created successfully")
ibm_db.close(conn)

讀?。≧etrieve)

conn = ibm_db.connect(dsn, "", "")
sql = "SELECT id, name, address, salary from Employees"
stmt = ibm_db.exec_immediate(conn, sql)
while ibm_db.fetch_row(stmt):
    print("ID = ", ibm_db.result(stmt, "ID"))
    print("NAME = ", ibm_db.result(stmt, "NAME"))
    print("ADDRESS = ", ibm_db.result(stmt, "ADDRESS"))
    print("SALARY = ", ibm_db.result(stmt, "SALARY"))
ibm_db.close(conn)

更新(Update)

conn = ibm_db.connect(dsn, "", "")
sql = "UPDATE Employees set SALARY = 25000.00 where ID = 1"
stmt = ibm_db.exec_immediate(conn, sql)
ibm_db.commit(conn)
print("Total number of rows updated :", ibm_db.num_rows(stmt))
ibm_db.close(conn)

刪除(Delete)

conn = ibm_db.connect(dsn, "", "")
sql = "DELETE from Employees where ID = 1"
stmt = ibm_db.exec_immediate(conn, sql)
ibm_db.commit(conn)
print("Total number of rows deleted :", ibm_db.num_rows(stmt))
ibm_db.close(conn)

Microsoft Access

連接數(shù)據(jù)庫(kù)

Python可以使用pyodbc庫(kù)連接Microsoft Access數(shù)據(jù)庫(kù):

import pyodbc
conn_str = (
    r'DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};'
    r'DBQ=path_to_your_access_file.accdb;'
)
conn = pyodbc.connect(conn_str)
print("Opened Access database successfully")
conn.close()

CRUD操作

接下來(lái),我們將展示在A(yíng)ccess中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute('''CREATE TABLE Employees
      (ID INT PRIMARY KEY     NOT NULL,
      NAME           TEXT    NOT NULL,
      AGE            INT     NOT NULL,
      ADDRESS        CHAR(50),
      SALARY         DECIMAL(9, 2));''')
conn.commit()
print("Table created successfully")
conn.close()

讀?。≧etrieve)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("SELECT id, name, address, salary from Employees")
rows = cursor.fetchall()
for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("ADDRESS = ", row[2])
    print("SALARY = ", row[3])
conn.close()

更新(Update)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("UPDATE Employees set SALARY = 25000.00 where ID = 1")
conn.commit()
print("Total number of rows updated :", cursor.rowcount)
conn.close()

刪除(Delete)

conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.execute("DELETE from Employees where ID = 1")
conn.commit()
print("Total number of rows deleted :", cursor.rowcount)
conn.close()

Cassandra

連接數(shù)據(jù)庫(kù)

Python可以使用cassandra-driver庫(kù)連接Cassandra數(shù)據(jù)庫(kù):

from cassandra.cluster import Cluster
cluster = Cluster(['127.0.0.1'])
session = cluster.connect('my_keyspace')
print("Opened Cassandra database successfully")
cluster.shutdown()

CRUD操作

接下來(lái),我們將展示在Cassandra中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

cluster = Cluster(['127.0.0.1'])
session = cluster.connect('my_keyspace')
session.execute("""
    CREATE TABLE Employees (
        id int PRIMARY KEY,
        name text,
        age int,
        address text,
        salary decimal
    )
""")
print("Table created successfully")
cluster.shutdown()

讀?。≧etrieve)

cluster = Cluster(['127.0.0.1'])
session = cluster.connect('my_keyspace')
rows = session.execute('SELECT id, name, address, salary FROM Employees')
for row in rows:
    print("ID = ", row.id)
    print("NAME = ", row.name)
    print("ADDRESS = ", row.address)
    print("SALARY = ", row.salary)
cluster.shutdown()

更新(Update)

cluster = Cluster(['127.0.0.1'])
session = cluster.connect('my_keyspace')
session.execute("UPDATE Employees SET salary = 25000.00 WHERE id = 1")
print("Row updated successfully")
cluster.shutdown()

刪除(Delete)

cluster = Cluster(['127.0.0.1'])
session = cluster.connect('my_keyspace')
session.execute("DELETE FROM Employees WHERE id = 1")
print("Row deleted successfully")
cluster.shutdown()

Redis

連接數(shù)據(jù)庫(kù)

Python可以使用redis-py庫(kù)連接Redis數(shù)據(jù)庫(kù):

import redis
r = redis.Redis(host='localhost', port=6379, db=0)
print("Opened Redis database successfully")

CRUD操作

接下來(lái),我們將展示在Redis中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

r = redis.Redis(host='localhost', port=6379, db=0)
r.set('employee:1:name', 'John')
r.set('employee:1:age', '30')
r.set('employee:1:address', 'New York')
r.set('employee:1:salary', '1000.00')
print("Keys created successfully")

讀取(Retrieve)

r = redis.Redis(host='localhost', port=6379, db=0)
print("NAME = ", r.get('employee:1:name').decode('utf-8'))
print("AGE = ", r.get('employee:1:age').decode('utf-8'))
print("ADDRESS = ", r.get('employee:1:address').decode('utf-8'))
print("SALARY = ", r.get('employee:1:salary').decode('utf-8'))

更新(Update)

r = redis.Redis(host='localhost', port=6379, db=0)

r.set('employee:1:salary', '25000.00')

print("Key updated successfully")

刪除(Delete)

r = redis.Redis(host='localhost', port=6379, db=0)

r.delete('employee:1:name', 'employee:1:age', 'employee:1:address', 'employee:1:salary')

print("Keys deleted successfully")

ElasticSearch

連接數(shù)據(jù)庫(kù)

Python可以使用elasticsearch庫(kù)連接ElasticSearch數(shù)據(jù)庫(kù):

from elasticsearch import Elasticsearch
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
print("Opened ElasticSearch database successfully")

CRUD操作

接下來(lái),我們將展示在ElasticSearch中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

employee = {
    'name': 'John',
    'age': 30,
    'address': 'New York',
    'salary': 1000.00
}
res = es.index(index='employees', doc_type='employee', id=1, body=employee)

print("Document created successfully")

讀?。≧etrieve)

es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

res = es.get(index='employees', doc_type='employee', id=1)
print("Document details:")
for field, details in res['_source'].items():
    print(f"{field.upper()} = ", details)

更新(Update)

es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

res = es.update(index='employees', doc_type='employee', id=1, body={
    'doc': {
        'salary': 25000.00
    }
})

print("Document updated successfully")

刪除(Delete)

es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

res = es.delete(index='employees', doc_type='employee', id=1)

print("Document deleted successfully")

Neo4j

連接數(shù)據(jù)庫(kù)

Python可以使用neo4j庫(kù)連接Neo4j數(shù)據(jù)庫(kù):

from neo4j import GraphDatabase
driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))
print("Opened Neo4j database successfully")
driver.close()

CRUD操作

接下來(lái),我們將展示在Neo4j中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))

with driver.session() as session:
    session.run("CREATE (:Employee {id: 1, name: 'John', age: 30, address: 'New York', salary: 1000.00})")

print("Node created successfully")

driver.close()

讀?。≧etrieve)

driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))

with driver.session() as session:
    result = session.run("MATCH (n:Employee) WHERE n.id = 1 RETURN n")
    for record in result:
        print("ID = ", record["n"]["id"])
        print("NAME = ", record["n"]["name"])
        print("ADDRESS = ", record["n"]["address"])
        print("SALARY = ", record["n"]["salary"])

driver.close()

更新(Update)

driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))

with driver.session() as session:
    session.run("MATCH (n:Employee) WHERE n.id = 1 SET n.salary = 25000.00")

print("Node updated successfully")

driver.close()

刪除(Delete)

driver = GraphDatabase.driver("bolt://localhost:7687", auth=("neo4j", "password"))

with driver.session() as session:
    session.run("MATCH (n:Employee) WHERE n.id = 1 DETACH DELETE n")

print("Node deleted successfully")

driver.close()

InfluxDB

連接數(shù)據(jù)庫(kù)

Python可以使用InfluxDB-Python庫(kù)連接InfluxDB數(shù)據(jù)庫(kù):

from influxdb import InfluxDBClient
client = InfluxDBClient(host='localhost', port=8086)
print("Opened InfluxDB database successfully")
client.close()

CRUD操作

接下來(lái),我們將展示在InfluxDB中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

client = InfluxDBClient(host='localhost', port=8086)

json_body = [
    {
        "measurement": "employees",
        "tags": {
            "id": "1"
        },
        "fields": {
            "name": "John",
            "age": 30,
            "address": "New York",
            "salary": 1000.00
        }
    }
]

client.write_points(json_body)

print("Point created successfully")

client.close()

讀?。≧etrieve)

client = InfluxDBClient(host='localhost', port=8086)

result = client.query('SELECT "name", "age", "address", "salary" FROM "employees"')

for point in result.get_points():
    print("ID = ", point['id'])
    print("NAME = ", point['name'])
    print("AGE = ", point['age'])
    print("ADDRESS = ", point['address'])
    print("SALARY = ", point['salary'])

client.close()

更新(Update)

InfluxDB的數(shù)據(jù)模型和其他數(shù)據(jù)庫(kù)不同,它沒(méi)有更新操作。但是你可以通過(guò)寫(xiě)入一個(gè)相同的數(shù)據(jù)點(diǎn)(即具有相同的時(shí)間戳和標(biāo)簽)并改變字段值,實(shí)現(xiàn)類(lèi)似更新操作的效果。

刪除(Delete)

同樣,InfluxDB也沒(méi)有提供刪除單個(gè)數(shù)據(jù)點(diǎn)的操作。然而,你可以刪除整個(gè)系列(即表)或者刪除某個(gè)時(shí)間段的數(shù)據(jù)。

client = InfluxDBClient(host='localhost', port=8086)

# 刪除整個(gè)系列
client.query('DROP SERIES FROM "employees"')

# 刪除某個(gè)時(shí)間段的數(shù)據(jù)
# client.query('DELETE FROM "employees" WHERE time < now() - 1d')

print("Series deleted successfully")

client.close()

Snowflake

連接數(shù)據(jù)庫(kù)

Python可以使用snowflake-connector-python庫(kù)連接Snowflake數(shù)據(jù)庫(kù):

from snowflake.connector import connect
con = connect(
    user='username',
    password='password',
    account='account_url',
    warehouse='warehouse',
    database='database',
    schema='schema'
)
print("Opened Snowflake database successfully")
con.close()

CRUD操作

接下來(lái),我們將展示在Snowflake中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

con = connect(
    user='username',
    password='password',
    account='account_url',
    warehouse='warehouse',
    database='database',
    schema='schema'
)

cur = con.cursor()
cur.execute("""
CREATE TABLE EMPLOYEES (
    ID INT,
    NAME STRING,
    AGE INT,
    ADDRESS STRING,
    SALARY FLOAT
)
""")

cur.execute("""
INSERT INTO EMPLOYEES (ID, NAME, AGE, ADDRESS, SALARY) VALUES
(1, 'John', 30, 'New York', 1000.00)
""")

print("Table created and row inserted successfully")

con.close()

讀?。≧etrieve)

con = connect(
    user='username',
    password='password',
    account='account_url',
    warehouse='warehouse',
    database='database',
    schema='schema'
)

cur = con.cursor()
cur.execute("SELECT * FROM EMPLOYEES WHERE ID = 1")

rows = cur.fetchall()

for row in rows:
    print("ID = ", row[0])
    print("NAME = ", row[1])
    print("AGE = ", row[2])
    print("ADDRESS = ", row[3])
    print("SALARY = ", row[4])

con.close()

更新(Update)

con = connect(
    user='username',
    password='password',
    account='account_url',
    warehouse='warehouse',
    database='database',
    schema='schema'
)

cur = con.cursor()
cur.execute("UPDATE EMPLOYEES SET SALARY = 25000.00 WHERE ID = 1")

print("Row updated successfully")

con.close()

刪除(Delete)

con = connect(
    user='username',
    password='password',
    account='account_url',
    warehouse='warehouse',
    database='database',
    schema='schema'
)

cur = con.cursor()
cur.execute("DELETE FROM EMPLOYEES WHERE ID = 1")

print("Row deleted successfully")

con.close()

Amazon DynamoDB

連接數(shù)據(jù)庫(kù)

Python可以使用boto3庫(kù)連接Amazon DynamoDB:

import boto3
dynamodb = boto3.resource('dynamodb', region_name='us-west-2',
                          aws_access_key_id='Your AWS Access Key',
                          aws_secret_access_key='Your AWS Secret Key')
print("Opened DynamoDB successfully")

CRUD操作

接下來(lái),我們將展示在DynamoDB中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

table = dynamodb.create_table(
    TableName='Employees',
    KeySchema=[
        {
            'AttributeName': 'id',
            'KeyType': 'HASH'
        },
    ],
    AttributeDefinitions=[
        {
            'AttributeName': 'id',
            'AttributeType': 'N'
        },
    ],
    ProvisionedThroughput={
        'ReadCapacityUnits': 5,
        'WriteCapacityUnits': 5
    }
)

table.put_item(
   Item={
        'id': 1,
        'name': 'John',
        'age': 30,
        'address': 'New York',
        'salary': 1000.00
    }
)

print("Table created and item inserted successfully")

讀取(Retrieve)

table = dynamodb.Table('Employees')

response = table.get_item(
   Key={
        'id': 1,
    }
)

item = response['Item']
print(item)

更新(Update)

table = dynamodb.Table('Employees')

table.update_item(
    Key={
        'id': 1,
    },
    UpdateExpression='SET salary = :val1',
    ExpressionAttributeValues={
        ':val1': 25000.00
    }
)

print("Item updated successfully")

刪除(Delete)

table = dynamodb.Table('Employees')

table.delete_item(
    Key={
        'id': 1,
    }
)

print("Item deleted successfully")

Microsoft Azure CosMos DB

連接數(shù)據(jù)庫(kù)

Python可以使用azure-cosmos庫(kù)連接Microsoft Azure CosMos DB:

from azure.cosmos import CosmosClient, PartitionKey, exceptions
url = 'Cosmos DB Account URL'
key = 'Cosmos DB Account Key'
client = CosmosClient(url, credential=key)
database_name = 'testDB'
database = client.get_database_client(database_name)
container_name = 'Employees'
container = database.get_container_client(container_name)
print("Opened CosMos DB successfully")

CRUD操作

接下來(lái),我們將展示在CosMos DB中如何進(jìn)行基本的CRUD操作。

創(chuàng)建(Create)

database = client.create_database_if_not_exists(id=database_name)

container = database.create_container_if_not_exists(
    id=container_name, 
    partition_key=PartitionKey(path="/id"),
    offer_throughput=400
)

container.upsert_item({
    'id': '1',
    'name': 'John',
    'age': 30,
    'address': 'New York',
    'salary': 1000.00
})

print("Container created and item upserted successfully")

讀取(Retrieve)

for item in container.read_all_items():
    print(item)

更新(Update)

for item in container.read_all_items():
    if item['id'] == '1':
        item['salary'] = 25000.00
        container.upsert_item(item)
        
print("Item updated successfully")

刪除(Delete)

for item in container.read_all_items():
    if item['id'] == '1':
        container.delete_item(item, partition_key='1')
        
print("Item deleted successfully")

以上就是Python史上最全種類(lèi)數(shù)據(jù)庫(kù)操作方法分享的詳細(xì)內(nèi)容,更多關(guān)于Python數(shù)據(jù)庫(kù)操作的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章

相關(guān)文章

  • python中小數(shù)點(diǎn)后的位數(shù)問(wèn)題

    python中小數(shù)點(diǎn)后的位數(shù)問(wèn)題

    這篇文章主要介紹了python中小數(shù)點(diǎn)后的位數(shù)問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2023-03-03
  • Python實(shí)現(xiàn)計(jì)算兩個(gè)指定日期相差幾年幾月幾日

    Python實(shí)現(xiàn)計(jì)算兩個(gè)指定日期相差幾年幾月幾日

    這篇文章主要為大家詳細(xì)介紹了如何使用Python實(shí)現(xiàn)計(jì)算兩個(gè)日期之間相差多少年,多少月,多少天,文中的的示例代碼講解詳細(xì),需要的可以參考下
    2024-02-02
  • Python魔術(shù)方法深入分析講解

    Python魔術(shù)方法深入分析講解

    所謂魔法函數(shù)(Magic Methods),是Python的?種?級(jí)語(yǔ)法,允許你在類(lèi)中?定義函數(shù)(函數(shù)名格式?般為_(kāi)_xx__),并綁定到類(lèi)的特殊?法中。?如在類(lèi)A中?定義__str__()函數(shù),則在調(diào)?str(A())時(shí),會(huì)?動(dòng)調(diào)?__str__()函數(shù),并返回相應(yīng)的結(jié)果
    2023-02-02
  • pandas DataFrame 警告(SettingWithCopyWarning)的解決

    pandas DataFrame 警告(SettingWithCopyWarning)的解決

    這篇文章主要介紹了pandas DataFrame 警告(SettingWithCopyWarning)的解決,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2019-07-07
  • scrapy-splash簡(jiǎn)單使用詳解

    scrapy-splash簡(jiǎn)單使用詳解

    這篇文章主要介紹了scrapy-splash簡(jiǎn)單使用詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2021-02-02
  • python使用fork實(shí)現(xiàn)守護(hù)進(jìn)程的方法

    python使用fork實(shí)現(xiàn)守護(hù)進(jìn)程的方法

    守護(hù)進(jìn)程(Daemon)也稱(chēng)為精靈進(jìn)程是一種生存期較長(zhǎng)的一種進(jìn)程。它們獨(dú)立于控制終端并且周期性的執(zhí)行某種任務(wù)或等待處理某些發(fā)生的事件。他們常常在系統(tǒng)引導(dǎo)裝入時(shí)啟動(dòng),在系統(tǒng)關(guān)閉時(shí)終止。
    2017-11-11
  • 跟老齊學(xué)Python之用Python計(jì)算

    跟老齊學(xué)Python之用Python計(jì)算

    做為零基礎(chǔ)學(xué)習(xí)Python,也就從計(jì)算小學(xué)數(shù)學(xué)題目開(kāi)始吧。因?yàn)閺倪@里開(kāi)始,數(shù)學(xué)的基礎(chǔ)知識(shí)列為肯定過(guò)關(guān)了。
    2014-09-09
  • 使用Python AIML搭建聊天機(jī)器人的方法示例

    使用Python AIML搭建聊天機(jī)器人的方法示例

    這篇文章主要介紹了使用Python AIML搭建聊天機(jī)器人的方法示例,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧
    2018-07-07
  • Pytorch自定義CNN網(wǎng)絡(luò)實(shí)現(xiàn)貓狗分類(lèi)詳解過(guò)程

    Pytorch自定義CNN網(wǎng)絡(luò)實(shí)現(xiàn)貓狗分類(lèi)詳解過(guò)程

    PyTorch是一個(gè)開(kāi)源的Python機(jī)器學(xué)習(xí)庫(kù),基于Torch,用于自然語(yǔ)言處理等應(yīng)用程序。它不僅能夠?qū)崿F(xiàn)強(qiáng)大的GPU加速,同時(shí)還支持動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)。本文將介紹PyTorch自定義CNN網(wǎng)絡(luò)實(shí)現(xiàn)貓狗分類(lèi),感興趣的可以學(xué)習(xí)一下
    2022-12-12
  • Python中的descriptor描述器簡(jiǎn)明使用指南

    Python中的descriptor描述器簡(jiǎn)明使用指南

    descriptor在Python中主要被用來(lái)定義方法和屬性,使用起來(lái)相當(dāng)具有技巧性,這里我們先從基礎(chǔ)的開(kāi)始,整理一份Python中的descriptor描述器簡(jiǎn)明使用指南
    2016-06-06

最新評(píng)論