Python中的Pydantic序列化詳解
Pydantic系列之序列化
model_dump
model_dump將對(duì)象轉(zhuǎn)化為字典對(duì)象,之后便可以調(diào)用Python標(biāo)準(zhǔn)庫序列化為json字符串,會(huì)序列化嵌套對(duì)象。
也可以使用dict(model)將對(duì)象轉(zhuǎn)化為字典,但嵌套對(duì)象不會(huì)被轉(zhuǎn)化為字典。
自定義序列化
@field_serializer
裝飾在實(shí)例方法或者靜態(tài)方法,被裝飾方法可以是以下四種。
- (self, value: Any, info: FieldSerializationInfo)
- (self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)
- (value: Any, info: SerializationInfo)
- (value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)
默認(rèn)為PlainSerializer,不走pydantic的序列化邏輯,此時(shí)的方法簽名只能是1或3,
nxt參數(shù)為pydantic序列化鏈
mode='wrap’支持上述四個(gè)方法簽名,可完成前置處理,pydantic序列化邏輯,載返回之前再處理的邏輯。
from datetime import datetime, timedelta, timezone
from pydantic import BaseModel, ConfigDict, field_serializer
from pydantic_core.core_schema import FieldSerializationInfo, SerializerFunctionWrapHandler
class WithCustomEncoders(BaseModel):
model_config = ConfigDict(ser_json_timedelta='iso8601')
dt: datetime
diff: timedelta
diff2: timedelta
@field_serializer('dt')
def serialize_dt(self, dt: datetime, _info: FieldSerializationInfo):
print(_info)
return dt.timestamp()
# 下面的裝飾器先執(zhí)行
@field_serializer('diff')
def ssse(self, diff: timedelta, info: FieldSerializationInfo):
print(info)
return diff.total_seconds()
@field_serializer('diff2', mode='wrap')
@staticmethod
def diff2_ser(diff2: timedelta, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo):
value = nxt(diff2)
return value + 'postprocess'
m = WithCustomEncoders(
dt=datetime(2032, 6, 1, tzinfo=timezone.utc), diff=timedelta(minutes=2),
diff2=timedelta(minutes=1)
)
print(m.model_dump_json())
# {"dt":1969660800.0,"diff":120.0,"diff2":"PT60Spostprocess"}@model_serializer
- (self, info: FieldSerializationInfo),mode=‘plain’
- (self, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo),mode=‘plain’
from typing import Dict, Any
from pydantic import BaseModel, model_serializer
from pydantic_core.core_schema import SerializerFunctionWrapHandler, SerializationInfo
class Model(BaseModel):
x: str
@model_serializer
def ser_model(self, info: SerializationInfo):
print(info)
return {'x': f'xxxxxx {self.x}'}
@model_serializer(mode='wrap')
def ser_model_wrap(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo) -> Dict[str, Any]:
print(info)
return {'x': f'serialized {nxt(self)}'}
print(Model(x='test value').model_dump_json())
# {"x":"serialized {'x': 'test value'}"}PlainSerializer和WrapSerializer
from typing import Any
from typing_extensions import Annotated
from pydantic import BaseModel, SerializerFunctionWrapHandler
from pydantic.functional_serializers import WrapSerializer, PlainSerializer
def ser_wrap(v: Any, nxt: SerializerFunctionWrapHandler) -> str:
return f'{nxt(v + 1):,}'
FancyInt = Annotated[int, WrapSerializer(ser_wrap, when_used='json')]
DoubleInt = Annotated[int, PlainSerializer(lambda x: x * 2)]
class MyModel(BaseModel):
x: FancyInt
y: DoubleInt
print(MyModel(x=1234, y=2).model_dump())
# {'x': 1234, 'y': 4}
print(MyModel(x=1234, y=2).model_dump(mode='json'))
# {'x': '1,235', 'y': 4}如何指定某個(gè)類型的序列化行為
在 pydantic v1 版本,configdict有個(gè)json_encoders參數(shù),可以配置指定類型的序列化行為。 在 pydantic v2 版本,不推薦json_encoders參數(shù),可使用如下方式
def serialize_datetime(value: datetime.datetime, __: SerializerFunctionWrapHandler, _: SerializationInfo):
return value.strftime('%Y-%m-%d %H:%M:%S')
LocalDateTime = Annotated[datetime.datetime, WrapSerializer(serialize_datetime, when_used='json')]按照聲明類型序列化,而不是實(shí)際類型
當(dāng)某個(gè)屬性的聲明類型是可序列化類型時(shí),如 BaseModel , dataclass , TypedDict 等,按照聲明類型序列化,而不是實(shí)際類型。如果想改變這種行為,可以使用 SerializeAsAny 。
from pydantic import BaseModel, SerializeAsAny
class User(BaseModel):
name: str
class UserLogin(User):
password: str
class OuterModel(BaseModel):
# 聲明為User類型,按照User類序列化,只有name字段
user: User
user1: SerializeAsAny[User] = UserLogin(name='serialize as any', password='hunter')
# 實(shí)際類型為UserLogin
user = UserLogin(name='pydantic', password='hunter2')
m = OuterModel(user=user)
print(m)
# user=UserLogin(name='pydantic', password='hunter2') user1=UserLogin(name='serialize as any', password='hunter')
print(m.model_dump())
# {'user': {'name': 'pydantic'}, 'user1': {'name': 'serialize as any', 'password': 'hunter'}}pickle
# TODO need to get pickling to work
import pickle
from pydantic import BaseModel
class FooBarModel(BaseModel):
a: str
b: int
m = FooBarModel(a='hello', b=123)
print(m)
#> a='hello' b=123
data = pickle.dumps(m)
print(data[:20])
#> b'\x80\x04\x95\x95\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main_'
m2 = pickle.loads(data)
print(m2)
#> a='hello' b=123靈活的exclude和include
- exclude,include支持集合,字典
- 支持集合指定位置序列化或不序列化, exclude = {'items' :{0: True, -1: False} , include = {'items': {'__all__':{'id':False}}}
from pydantic import BaseModel, SecretStr
class User(BaseModel):
id: int
username: str
password: SecretStr
class Transaction(BaseModel):
id: str
user: User
value: int
t = Transaction(
id='1234567890',
user=User(id=42, username='JohnDoe', password='hashedpassword'),
value=9876543210,
)
# using a set:
print(t.model_dump(exclude={'user', 'value'}))
#> {'id': '1234567890'}
# using a dict:
print(t.model_dump(exclude={'user': {'username', 'password'}, 'value': True}))
#> {'id': '1234567890', 'user': {'id': 42}}
print(t.model_dump(include={'id': True, 'user': {'id'}}))
#> {'id': '1234567890', 'user': {'id': 42}}到此這篇關(guān)于Python中的Pydantic序列化詳解的文章就介紹到這了,更多相關(guān)Pydantic序列化內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python實(shí)現(xiàn)兩個(gè)一維列表合并成一個(gè)二維列表
今天小編就為大家分享一篇python實(shí)現(xiàn)兩個(gè)一維列表合并成一個(gè)二維列表,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-12-12
pandas中的DataFrame按指定順序輸出所有列的方法
下面小編就為大家分享一篇pandas中的DataFrame按指定順序輸出所有列的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-04-04
python接口自動(dòng)化(十七)--Json 數(shù)據(jù)處理---一次爬坑記(詳解)
這篇文章主要介紹了python Json 數(shù)據(jù)處理,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-04-04
Python偏函數(shù)實(shí)現(xiàn)原理及應(yīng)用
這篇文章主要介紹了Python偏函數(shù)實(shí)現(xiàn)原理及應(yīng)用,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-11-11
在RedHat系Linux上部署Python的Celery框架的教程
這篇文章主要介紹了在RedHat系Linux上部署Python的Celery框架的教程, Celery是一個(gè)并行分布框架,擁有良好的I/O性能,需要的朋友可以參考下2015-04-04
Python使用pandas和xlsxwriter讀寫xlsx文件的方法示例
今天小編就為大家分享一篇關(guān)于Python使用pandas和xlsxwriter讀寫xlsx文件的方法示例,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧2019-04-04

