Python中的Pydantic序列化詳解
Pydantic系列之序列化
model_dump
model_dump將對(duì)象轉(zhuǎn)化為字典對(duì)象,之后便可以調(diào)用Python標(biāo)準(zhǔn)庫(kù)序列化為json字符串,會(huì)序列化嵌套對(duì)象。
也可以使用dict(model)將對(duì)象轉(zhuǎn)化為字典,但嵌套對(duì)象不會(huì)被轉(zhuǎn)化為字典。
自定義序列化
@field_serializer
裝飾在實(shí)例方法或者靜態(tài)方法,被裝飾方法可以是以下四種。
- (self, value: Any, info: FieldSerializationInfo)
- (self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)
- (value: Any, info: SerializationInfo)
- (value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)
默認(rèn)為PlainSerializer,不走pydantic的序列化邏輯,此時(shí)的方法簽名只能是1或3,
nxt參數(shù)為pydantic序列化鏈
mode='wrap’支持上述四個(gè)方法簽名,可完成前置處理,pydantic序列化邏輯,載返回之前再處理的邏輯。
from datetime import datetime, timedelta, timezone from pydantic import BaseModel, ConfigDict, field_serializer from pydantic_core.core_schema import FieldSerializationInfo, SerializerFunctionWrapHandler class WithCustomEncoders(BaseModel): model_config = ConfigDict(ser_json_timedelta='iso8601') dt: datetime diff: timedelta diff2: timedelta @field_serializer('dt') def serialize_dt(self, dt: datetime, _info: FieldSerializationInfo): print(_info) return dt.timestamp() # 下面的裝飾器先執(zhí)行 @field_serializer('diff') def ssse(self, diff: timedelta, info: FieldSerializationInfo): print(info) return diff.total_seconds() @field_serializer('diff2', mode='wrap') @staticmethod def diff2_ser(diff2: timedelta, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo): value = nxt(diff2) return value + 'postprocess' m = WithCustomEncoders( dt=datetime(2032, 6, 1, tzinfo=timezone.utc), diff=timedelta(minutes=2), diff2=timedelta(minutes=1) ) print(m.model_dump_json()) # {"dt":1969660800.0,"diff":120.0,"diff2":"PT60Spostprocess"}
@model_serializer
- (self, info: FieldSerializationInfo),mode=‘plain’
- (self, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo),mode=‘plain’
from typing import Dict, Any from pydantic import BaseModel, model_serializer from pydantic_core.core_schema import SerializerFunctionWrapHandler, SerializationInfo class Model(BaseModel): x: str @model_serializer def ser_model(self, info: SerializationInfo): print(info) return {'x': f'xxxxxx {self.x}'} @model_serializer(mode='wrap') def ser_model_wrap(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo) -> Dict[str, Any]: print(info) return {'x': f'serialized {nxt(self)}'} print(Model(x='test value').model_dump_json()) # {"x":"serialized {'x': 'test value'}"}
PlainSerializer和WrapSerializer
from typing import Any from typing_extensions import Annotated from pydantic import BaseModel, SerializerFunctionWrapHandler from pydantic.functional_serializers import WrapSerializer, PlainSerializer def ser_wrap(v: Any, nxt: SerializerFunctionWrapHandler) -> str: return f'{nxt(v + 1):,}' FancyInt = Annotated[int, WrapSerializer(ser_wrap, when_used='json')] DoubleInt = Annotated[int, PlainSerializer(lambda x: x * 2)] class MyModel(BaseModel): x: FancyInt y: DoubleInt print(MyModel(x=1234, y=2).model_dump()) # {'x': 1234, 'y': 4} print(MyModel(x=1234, y=2).model_dump(mode='json')) # {'x': '1,235', 'y': 4}
如何指定某個(gè)類型的序列化行為
在 pydantic v1 版本,configdict有個(gè)json_encoders參數(shù),可以配置指定類型的序列化行為。 在 pydantic v2 版本,不推薦json_encoders參數(shù),可使用如下方式
def serialize_datetime(value: datetime.datetime, __: SerializerFunctionWrapHandler, _: SerializationInfo): return value.strftime('%Y-%m-%d %H:%M:%S') LocalDateTime = Annotated[datetime.datetime, WrapSerializer(serialize_datetime, when_used='json')]
按照聲明類型序列化,而不是實(shí)際類型
當(dāng)某個(gè)屬性的聲明類型是可序列化類型時(shí),如 BaseModel , dataclass , TypedDict 等,按照聲明類型序列化,而不是實(shí)際類型。如果想改變這種行為,可以使用 SerializeAsAny 。
from pydantic import BaseModel, SerializeAsAny class User(BaseModel): name: str class UserLogin(User): password: str class OuterModel(BaseModel): # 聲明為User類型,按照User類序列化,只有name字段 user: User user1: SerializeAsAny[User] = UserLogin(name='serialize as any', password='hunter') # 實(shí)際類型為UserLogin user = UserLogin(name='pydantic', password='hunter2') m = OuterModel(user=user) print(m) # user=UserLogin(name='pydantic', password='hunter2') user1=UserLogin(name='serialize as any', password='hunter') print(m.model_dump()) # {'user': {'name': 'pydantic'}, 'user1': {'name': 'serialize as any', 'password': 'hunter'}}
pickle
# TODO need to get pickling to work import pickle from pydantic import BaseModel class FooBarModel(BaseModel): a: str b: int m = FooBarModel(a='hello', b=123) print(m) #> a='hello' b=123 data = pickle.dumps(m) print(data[:20]) #> b'\x80\x04\x95\x95\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main_' m2 = pickle.loads(data) print(m2) #> a='hello' b=123
靈活的exclude和include
- exclude,include支持集合,字典
- 支持集合指定位置序列化或不序列化, exclude = {'items' :{0: True, -1: False} , include = {'items': {'__all__':{'id':False}}}
from pydantic import BaseModel, SecretStr class User(BaseModel): id: int username: str password: SecretStr class Transaction(BaseModel): id: str user: User value: int t = Transaction( id='1234567890', user=User(id=42, username='JohnDoe', password='hashedpassword'), value=9876543210, ) # using a set: print(t.model_dump(exclude={'user', 'value'})) #> {'id': '1234567890'} # using a dict: print(t.model_dump(exclude={'user': {'username', 'password'}, 'value': True})) #> {'id': '1234567890', 'user': {'id': 42}} print(t.model_dump(include={'id': True, 'user': {'id'}})) #> {'id': '1234567890', 'user': {'id': 42}}
到此這篇關(guān)于Python中的Pydantic序列化詳解的文章就介紹到這了,更多相關(guān)Pydantic序列化內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
解決import tensorflow as tf 出錯(cuò)的原因
這篇文章主要介紹了解決import tensorflow as tf 出錯(cuò)的原因,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-04-04一文帶你詳解Python中sys.executable函數(shù)的作用
sys.executable函數(shù)是用來(lái)獲取當(dāng)前Python解釋器的完整路徑的,本文主要介紹了一文帶你詳解Python中sys.executable函數(shù)的作用,具有一定的參考價(jià)值,感興趣的可以了解一下2024-03-03Python 根據(jù)日志級(jí)別打印不同顏色的日志的方法示例
這篇文章主要介紹了Python 根據(jù)日志級(jí)別打印不同顏色的日志的方法示例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-08-08python實(shí)現(xiàn)兩個(gè)文件合并功能
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)兩個(gè)文件合并功能,一個(gè)簡(jiǎn)單的文件合并程序,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-04-04python 實(shí)現(xiàn)簡(jiǎn)單的吃豆人游戲
這篇文章主要介紹了python 如何實(shí)現(xiàn)簡(jiǎn)單的吃豆人游戲,幫助大家更好的理解和學(xué)習(xí)使用python制作游戲,感興趣的朋友可以了解下2021-04-04