欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

基于pytorch實現(xiàn)運動鞋品牌識別功能

 更新時間:2024年02月01日 10:10:28   作者:Tooii  
這篇文章主要給大家介紹了關于如何基于pytorch實現(xiàn)運動鞋品牌識別功能,文中通過圖文以及實例代碼介紹的非常詳細,對大家學習或者使用PyTorch具有一定的參考學習價值,需要的朋友可以參考下

一、前期準備

1.設置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2. 導入數(shù)據(jù)

data_dir = '../Data/運動鞋品牌識別數(shù)據(jù)/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*/*'))
classeNames = sorted(item.name for item in data_dir.glob('*/') if item.is_dir())
classeNames
['test', 'train']
  • 第一步:使用pathlib.Path()函數(shù)將字符串類型的文件夾路徑轉(zhuǎn)換為pathlib.Path對象。
  • 第二步:使用glob()方法獲取data_dir路徑下的所有文件路徑,并以列表形式存儲在data_paths中。
  • 第三步:通過split()函數(shù)對data_paths中的每個文件路徑執(zhí)行分割操作,獲得各個文件所屬的類別名稱,并存儲在classeNames
  • 第四步:打印classeNames列表,顯示每個文件所屬的類別名稱。
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 將輸入圖片resize成統(tǒng)一尺寸
    # transforms.RandomHorizontalFlip(), # 隨機水平翻轉(zhuǎn)
    transforms.ToTensor(),          # 將PIL Image或numpy.ndarray轉(zhuǎn)換為tensor,并歸一化到[0,1]之間
    transforms.Normalize(           # 標準化處理-->轉(zhuǎn)換為標準正太分布(高斯分布),使模型更容易收斂
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]與std=[0.229,0.224,0.225] 從數(shù)據(jù)集中隨機抽樣計算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 將輸入圖片resize成統(tǒng)一尺寸
    transforms.ToTensor(),          # 將PIL Image或numpy.ndarray轉(zhuǎn)換為tensor,并歸一化到[0,1]之間
    transforms.Normalize(           # 標準化處理-->轉(zhuǎn)換為標準正太分布(高斯分布),使模型更容易收斂
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]與std=[0.229,0.224,0.225] 從數(shù)據(jù)集中隨機抽樣計算得到的。
])

train_dataset = datasets.ImageFolder("../Data/運動鞋品牌識別數(shù)據(jù)/train/",transform=train_transforms)
test_dataset  = datasets.ImageFolder("../Data/運動鞋品牌識別數(shù)據(jù)/test/",transform=train_transforms)
train_dataset.class_to_idx
{'adidas': 0, 'nike': 1}

3. 劃分數(shù)據(jù)集

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、構(gòu)建簡單的CNN網(wǎng)絡

對于一般的CNN網(wǎng)絡來說,都是由特征提取網(wǎng)絡和分類網(wǎng)絡構(gòu)成,其中特征提取網(wǎng)絡用于提取圖片的特征,分類網(wǎng)絡用于將圖片進行分類。

網(wǎng)絡結(jié)構(gòu)圖

在這里插入圖片描述

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1=nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.conv2=nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
            nn.BatchNorm2d(12),
            nn.ReLU())
        
        self.pool3=nn.Sequential(
            nn.MaxPool2d(2))                              # 12*108*108
        
        self.conv4=nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.conv5=nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
            nn.BatchNorm2d(24),
            nn.ReLU())
        
        self.pool6=nn.Sequential(
            nn.MaxPool2d(2))                              # 24*50*50

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))
        
        self.fc=nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))
        
    def forward(self, x):
        
        batch_size = x.size(0)
        x = self.conv1(x)  # 卷積-BN-激活
        x = self.conv2(x)  # 卷積-BN-激活
        x = self.pool3(x)  # 池化
        x = self.conv4(x)  # 卷積-BN-激活
        x = self.conv5(x)  # 卷積-BN-激活
        x = self.pool6(x)  # 池化
        x = self.dropout(x)
        x = x.view(batch_size, -1)  # flatten 變成全連接網(wǎng)絡需要的輸入 (batch, 24*50*50) ==> (batch, -1), -1 此處自動算出的是24*50*50
        x = self.fc(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)
model
Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)

三、 訓練模型

1. 編寫訓練函數(shù)

# 訓練循環(huán)
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 訓練集的大小
    num_batches = len(dataloader)   # 批次數(shù)目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化訓練損失和正確率
    
    for X, y in dataloader:  # 獲取圖片及其標簽
        X, y = X.to(device), y.to(device)
        
        # 計算預測誤差
        pred = model(X)          # 網(wǎng)絡輸出
        loss = loss_fn(pred, y)  # 計算網(wǎng)絡輸出和真實值之間的差距,targets為真實值,計算二者差值即為損失
        
        # 反向傳播
        optimizer.zero_grad()  # grad屬性歸零
        loss.backward()        # 反向傳播
        optimizer.step()       # 每一步自動更新
        
        # 記錄acc與loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 編寫測試函數(shù)

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 測試集的大小
    num_batches = len(dataloader)          # 批次數(shù)目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 當不進行訓練時,停止梯度更新,節(jié)省計算內(nèi)存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 計算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 設置動態(tài)學習率

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 個epoch衰減到原來的 0.98
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-4 # 初始學習率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

4. 正式訓練

loss_fn    = nn.CrossEntropyLoss() # 創(chuàng)建損失函數(shù)
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新學習率(使用自定義學習率時使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新學習率(調(diào)用官方動態(tài)學習率接口時使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 獲取當前的學習率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                            epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
Epoch: 1, Train_acc:52.6%, Train_loss:0.744, Test_acc:50.0%, Test_loss:0.716, Lr:1.00E-04
Epoch: 2, Train_acc:59.0%, Train_loss:0.690, Test_acc:67.1%, Test_loss:0.618, Lr:1.00E-04
Epoch: 3, Train_acc:64.1%, Train_loss:0.627, Test_acc:61.8%, Test_loss:0.637, Lr:9.20E-05
Epoch: 4, Train_acc:67.9%, Train_loss:0.588, Test_acc:77.6%, Test_loss:0.584, Lr:9.20E-05
Epoch: 5, Train_acc:74.7%, Train_loss:0.539, Test_acc:73.7%, Test_loss:0.553, Lr:8.46E-05
Epoch: 6, Train_acc:76.3%, Train_loss:0.516, Test_acc:76.3%, Test_loss:0.528, Lr:8.46E-05
Epoch: 7, Train_acc:77.1%, Train_loss:0.495, Test_acc:80.3%, Test_loss:0.533, Lr:7.79E-05
Epoch: 8, Train_acc:77.3%, Train_loss:0.491, Test_acc:76.3%, Test_loss:0.548, Lr:7.79E-05
Epoch: 9, Train_acc:78.1%, Train_loss:0.457, Test_acc:76.3%, Test_loss:0.516, Lr:7.16E-05
Epoch:10, Train_acc:83.1%, Train_loss:0.436, Test_acc:73.7%, Test_loss:0.513, Lr:7.16E-05
Epoch:11, Train_acc:81.5%, Train_loss:0.442, Test_acc:77.6%, Test_loss:0.525, Lr:6.59E-05
Epoch:12, Train_acc:83.3%, Train_loss:0.423, Test_acc:75.0%, Test_loss:0.552, Lr:6.59E-05
Epoch:13, Train_acc:82.3%, Train_loss:0.418, Test_acc:77.6%, Test_loss:0.477, Lr:6.06E-05
Epoch:14, Train_acc:85.3%, Train_loss:0.403, Test_acc:76.3%, Test_loss:0.513, Lr:6.06E-05
Epoch:15, Train_acc:86.1%, Train_loss:0.387, Test_acc:78.9%, Test_loss:0.509, Lr:5.58E-05
Epoch:16, Train_acc:87.5%, Train_loss:0.372, Test_acc:80.3%, Test_loss:0.486, Lr:5.58E-05
Epoch:17, Train_acc:88.2%, Train_loss:0.358, Test_acc:75.0%, Test_loss:0.460, Lr:5.13E-05
Epoch:18, Train_acc:88.2%, Train_loss:0.359, Test_acc:77.6%, Test_loss:0.469, Lr:5.13E-05
Epoch:19, Train_acc:88.6%, Train_loss:0.360, Test_acc:78.9%, Test_loss:0.504, Lr:4.72E-05
Epoch:20, Train_acc:89.4%, Train_loss:0.357, Test_acc:78.9%, Test_loss:0.480, Lr:4.72E-05
Epoch:21, Train_acc:90.4%, Train_loss:0.341, Test_acc:78.9%, Test_loss:0.475, Lr:4.34E-05
Epoch:22, Train_acc:90.2%, Train_loss:0.335, Test_acc:78.9%, Test_loss:0.481, Lr:4.34E-05
Epoch:23, Train_acc:89.4%, Train_loss:0.335, Test_acc:77.6%, Test_loss:0.491, Lr:4.00E-05
Epoch:24, Train_acc:91.4%, Train_loss:0.320, Test_acc:78.9%, Test_loss:0.469, Lr:4.00E-05
Epoch:25, Train_acc:92.6%, Train_loss:0.324, Test_acc:78.9%, Test_loss:0.485, Lr:3.68E-05
Epoch:26, Train_acc:92.4%, Train_loss:0.313, Test_acc:78.9%, Test_loss:0.478, Lr:3.68E-05
Epoch:27, Train_acc:91.8%, Train_loss:0.307, Test_acc:77.6%, Test_loss:0.436, Lr:3.38E-05
Epoch:28, Train_acc:90.4%, Train_loss:0.313, Test_acc:77.6%, Test_loss:0.480, Lr:3.38E-05
Epoch:29, Train_acc:93.0%, Train_loss:0.302, Test_acc:76.3%, Test_loss:0.485, Lr:3.11E-05
Epoch:30, Train_acc:92.2%, Train_loss:0.306, Test_acc:78.9%, Test_loss:0.438, Lr:3.11E-05
Epoch:31, Train_acc:92.4%, Train_loss:0.306, Test_acc:77.6%, Test_loss:0.455, Lr:2.86E-05
Epoch:32, Train_acc:92.6%, Train_loss:0.299, Test_acc:78.9%, Test_loss:0.425, Lr:2.86E-05
Epoch:33, Train_acc:91.6%, Train_loss:0.299, Test_acc:77.6%, Test_loss:0.524, Lr:2.63E-05
Epoch:34, Train_acc:93.6%, Train_loss:0.290, Test_acc:78.9%, Test_loss:0.477, Lr:2.63E-05
Epoch:35, Train_acc:94.0%, Train_loss:0.290, Test_acc:78.9%, Test_loss:0.455, Lr:2.42E-05
Epoch:36, Train_acc:93.4%, Train_loss:0.282, Test_acc:78.9%, Test_loss:0.453, Lr:2.42E-05
Epoch:37, Train_acc:94.2%, Train_loss:0.281, Test_acc:78.9%, Test_loss:0.457, Lr:2.23E-05
Epoch:38, Train_acc:94.0%, Train_loss:0.289, Test_acc:78.9%, Test_loss:0.449, Lr:2.23E-05
Epoch:39, Train_acc:94.2%, Train_loss:0.279, Test_acc:77.6%, Test_loss:0.435, Lr:2.05E-05
Epoch:40, Train_acc:93.8%, Train_loss:0.280, Test_acc:77.6%, Test_loss:0.425, Lr:2.05E-05
Done

四、 結(jié)果可視化

1. Loss與Accuracy圖

import matplotlib.pyplot as plt
#隱藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用來正常顯示中文標簽
plt.rcParams['axes.unicode_minus'] = False      # 用來正常顯示負號
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在這里插入圖片描述

2. 指定圖片進行預測

from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示預測的圖片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'預測結(jié)果是:{pred_class}')
# 預測訓練集中的某張照片
predict_one_image(image_path='../Data/運動鞋品牌識別數(shù)據(jù)/test/nike/31.jpg', 
                    model=model, 
                    transform=train_transforms, 
                    classes=classes)

預測結(jié)果是:nike

五、保存并加載模型

# 模型保存
PATH = './model/shoeBrands_model.pth'  # 保存的參數(shù)文件名
torch.save(model.state_dict(), PATH)

# 將參數(shù)加載到model當中
model.load_state_dict(torch.load(PATH, map_location=device))

六、動態(tài)學習率

1.torch.optim.lr_scheduler.StepLR

等間隔動態(tài)調(diào)整方法,每經(jīng)過step_size個epoch,做一次學習率decay,以gamma值為縮小倍數(shù)。

  • 函數(shù)原型:torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

  • 參數(shù):

    • optimizer(Optimizer):要調(diào)整學習率的優(yōu)化器
    • step_size(int):學習率調(diào)整的間隔epoch數(shù)
    • gamma(float):學習率調(diào)整的縮減比例
    • last_epoch(int):上一次調(diào)整學習率的時間點,默認為-1
  • 代碼示例:

    optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )

    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

2.torch.optim.lr_scheduler.LambdaLR

根據(jù)給定的函數(shù)動態(tài)調(diào)整學習率。

  • 函數(shù)原型:torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

  • 參數(shù):

    • optimizer(Optimizer):要調(diào)整學習率的優(yōu)化器
    • lr_lambda(function):根據(jù)epoch返回一個值,作為學習率的倍數(shù)
    • last_epoch(int):上一次調(diào)整學習率的時間點,默認為-1
  • 代碼示例:

    lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二組參數(shù)的調(diào)整方法

    optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)

    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #選定調(diào)整方法

3.torch.optim.lr_scheduler.MultiStepLR

等間隔動態(tài)調(diào)整方法,在指定的epoch位置做一次學習率decay,以gamma值為縮小倍數(shù)。

  • 函數(shù)原型:torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

  • 參數(shù):

    • optimizer(Optimizer):要調(diào)整學習率的優(yōu)化器
    • milestones(list):學習率調(diào)整的epoch位置
    • gamma(float):學習率調(diào)整的縮減比例
    • last_epoch(int):上一次調(diào)整學習率的時間點,默認為-1
  • 代碼示例:

    optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )

    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=[2,6,15],gamma=0.1)

七、個人收獲

在這個項目中,我首先準備了數(shù)據(jù),包括設置GPU環(huán)境、導入數(shù)據(jù)、劃分數(shù)據(jù)集等。然后構(gòu)建了一個簡單的CNN網(wǎng)絡,用于對運動鞋品牌進行識別。接著,我編寫了訓練函數(shù)和測試函數(shù),用于訓練模型和評估模型性能。在訓練過程中,我還使用了動態(tài)學習率的方法,通過調(diào)整學習率來優(yōu)化模型訓練過程。最后,我展示了訓練過程中的損失和準確率的變化情況,并對模型進行了保存和加載,以便后續(xù)的使用。

通過這個項目,我深入了解了深度學習模型的訓練流程,包括數(shù)據(jù)準備、模型構(gòu)建、訓練和評估,以及模型的保存和加載。同時,動態(tài)學習率的應用也豐富了我的訓練優(yōu)化方法的知識儲備。這些知識將對我未來的深度學習項目產(chǎn)生積極的影響。

以上就是基于pytorch實現(xiàn)運動鞋品牌識別功能的詳細內(nèi)容,更多關于pytorch運動鞋品牌識別的資料請關注腳本之家其它相關文章!

相關文章

  • Python學習筆記之For循環(huán)用法詳解

    Python學習筆記之For循環(huán)用法詳解

    這篇文章主要介紹了Python學習筆記之For循環(huán)用法,結(jié)合實例形式詳細分析了Python for循環(huán)的功能、原理、用法及相關操作注意事項,需要的朋友可以參考下
    2019-08-08
  • Python lambda和Python def區(qū)別分析

    Python lambda和Python def區(qū)別分析

    Python支持一種有趣的語法,它允許你快速定義單行的最小函數(shù)。這些叫做lambda的函數(shù),是從Lisp借用來的,可以用在任何需要函數(shù)的地方
    2014-11-11
  • 聊聊prod()與cumprod()區(qū)別cumsum()

    聊聊prod()與cumprod()區(qū)別cumsum()

    這篇文章主要介紹了prod()與cumprod()區(qū)別cumsum(),具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2021-05-05
  • 對Keras自帶Loss Function的深入研究

    對Keras自帶Loss Function的深入研究

    這篇文章主要介紹了對Keras自帶Loss Function的深入研究,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2021-05-05
  • python實現(xiàn)自動更換ip的方法

    python實現(xiàn)自動更換ip的方法

    這篇文章主要介紹了python實現(xiàn)自動更換ip的方法,涉及Python針對本機網(wǎng)絡配置的相關操作技巧,非常具有實用價值,需要的朋友可以參考下
    2015-05-05
  • windows10 pycharm下安裝pyltp庫和加載模型實現(xiàn)語義角色標注的示例代碼

    windows10 pycharm下安裝pyltp庫和加載模型實現(xiàn)語義角色標注的示例代碼

    這篇文章主要介紹了windows10 pycharm下安裝pyltp庫和加載模型實現(xiàn)語義角色標注,本文通過圖文實例相結(jié)合給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2020-05-05
  • Python蓄水池算法的應用案例與代碼詳解

    Python蓄水池算法的應用案例與代碼詳解

    蓄水池算法(Reservoir Sampling)是一種用于處理大規(guī)模數(shù)據(jù)流的隨機抽樣算法,該算法能夠在不知道數(shù)據(jù)流大小的情況下,從數(shù)據(jù)流中均勻隨機地抽取固定大小的樣本,本文給大家介紹了一個詳細的Python蓄水池算法的實現(xiàn),包括完整的代碼示例,需要的朋友可以參考下
    2024-11-11
  • 一文深入學習Python中的os.listdir函數(shù)

    一文深入學習Python中的os.listdir函數(shù)

    這篇文章主要給大家介紹了關于Python中os.listdir函數(shù)的相關資料,os.listdir是 Python中的一個函數(shù),它的意思是返回指定目錄下的文件和文件夾的名稱的列表,需要的朋友可以參考下
    2023-10-10
  • pandas 實現(xiàn)將NaN轉(zhuǎn)換為None

    pandas 實現(xiàn)將NaN轉(zhuǎn)換為None

    這篇文章主要介紹了pandas 實現(xiàn)將NaN轉(zhuǎn)換為None的操作,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2021-05-05
  • pycharm中導入不了torch包的解決方案

    pycharm中導入不了torch包的解決方案

    這篇文章主要介紹了pycharm中導入不了torch包的解決方案,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教
    2023-08-08

最新評論