pytorch1.60 torch.nn在pycharm中無法自動智能提示的解決
問題描述
安裝了pytorch最新版本1.6之后,在pycharm中編輯python代碼時,輸入torch.nn.
看不到提示了,比如torch.nn.MSELoss()
。
而在1.4及以前的版本中,直接輸入torch.nn.
就會自動提示出很多torch.nn.modules中的API。
該問題的討論在前幾年有過不少,但都是基于老版本,經(jīng)過嘗試,對于1.6版本是無效的。
原因分析
pycharm的自動提示是根據(jù)第三方包的每個文件夾下的__init__.pyi
文件來顯示的,只有__init__.pyi
中import了的API才會被pycharm自動提示。
首先對pytorch.nn
模塊要知道,問題描述中提到的MSELoss
等眾多函數(shù),真實位置是torch.nn.modules.MSELoss()
,你直接調用這個真實位置是可以自動提示的。
但是1.4及以前的版本中大家都熟悉了直接用nn.MSELoss()
這樣調用,如何讓1.6版本也能像歷史版本一樣提示呢?
基于此,我對比了1.6和1.4的區(qū)別。
在torch 1.6版本包存放位置下,torch/nn/
下是有__init__.pyi
的,里面有一行from .modules import *
,說明nn
模塊是可以直接調用子模塊modules
中的API的,所以直接調用nn.MSELoss()
不會報錯,只是不會自動提示。
然后在進入torch/nn/modules/
發(fā)現(xiàn),1.6版本中缺少__init__.pyi
文件,所以在pycharm輸入nn.
的時候并不會提示子模塊modules
中的API。
解決方案
從pytorch 1.4版本中復制一份__init__.pyi
文件到1.6版本的依賴包的相同目錄下。
具體位置是:
{你的第三方包存放位置}/Lib/site-packages/torch/nn/modules/__init__.pyi
然后就可以在pycharm中愉快使用nn.
自動提示了。其他模塊不自動提示的,解決方法類同。
補充
關于解決方案中第三方包存放位置不知道的,可以在pycharm左側項目目錄結構中看到一項External Libraries
,點開它,你就能直接找到Lib/site-packages/torch/nn/modules/
,從而不必去資源管理器找。
附件 __init__.pyi
from .module import Module as Module from .activation import CELU as CELU, ELU as ELU, GLU as GLU, GELU as GELU, Hardshrink as Hardshrink, \ Hardtanh as Hardtanh, LeakyReLU as LeakyReLU, LogSigmoid as LogSigmoid, LogSoftmax as LogSoftmax, PReLU as PReLU, \ RReLU as RReLU, ReLU as ReLU, ReLU6 as ReLU6, SELU as SELU, Sigmoid as Sigmoid, Softmax as Softmax, \ Softmax2d as Softmax2d, Softmin as Softmin, Softplus as Softplus, Softshrink as Softshrink, Softsign as Softsign, \ Tanh as Tanh, Tanhshrink as Tanhshrink, Threshold as Threshold from .adaptive import AdaptiveLogSoftmaxWithLoss as AdaptiveLogSoftmaxWithLoss from .batchnorm import BatchNorm1d as BatchNorm1d, BatchNorm2d as BatchNorm2d, BatchNorm3d as BatchNorm3d, \ SyncBatchNorm as SyncBatchNorm from .container import Container as Container, ModuleDict as ModuleDict, ModuleList as ModuleList, \ ParameterDict as ParameterDict, ParameterList as ParameterList, Sequential as Sequential from .conv import Conv1d as Conv1d, Conv2d as Conv2d, Conv3d as Conv3d, ConvTranspose1d as ConvTranspose1d, \ ConvTranspose2d as ConvTranspose2d, ConvTranspose3d as ConvTranspose3d from .distance import CosineSimilarity as CosineSimilarity, PairwiseDistance as PairwiseDistance from .dropout import AlphaDropout as AlphaDropout, Dropout as Dropout, Dropout2d as Dropout2d, Dropout3d as Dropout3d, \ FeatureAlphaDropout as FeatureAlphaDropout from .fold import Fold as Fold, Unfold as Unfold from .instancenorm import InstanceNorm1d as InstanceNorm1d, InstanceNorm2d as InstanceNorm2d, \ InstanceNorm3d as InstanceNorm3d from .linear import Bilinear as Bilinear, Identity as Identity, Linear as Linear from .loss import BCELoss as BCELoss, BCEWithLogitsLoss as BCEWithLogitsLoss, CTCLoss as CTCLoss, \ CosineEmbeddingLoss as CosineEmbeddingLoss, CrossEntropyLoss as CrossEntropyLoss, \ HingeEmbeddingLoss as HingeEmbeddingLoss, KLDivLoss as KLDivLoss, L1Loss as L1Loss, MSELoss as MSELoss, \ MarginRankingLoss as MarginRankingLoss, MultiLabelMarginLoss as MultiLabelMarginLoss, \ MultiLabelSoftMarginLoss as MultiLabelSoftMarginLoss, MultiMarginLoss as MultiMarginLoss, NLLLoss as NLLLoss, \ NLLLoss2d as NLLLoss2d, PoissonNLLLoss as PoissonNLLLoss, SmoothL1Loss as SmoothL1Loss, \ SoftMarginLoss as SoftMarginLoss, TripletMarginLoss as TripletMarginLoss from .module import Module as Module from .normalization import CrossMapLRN2d as CrossMapLRN2d, GroupNorm as GroupNorm, LayerNorm as LayerNorm, \ LocalResponseNorm as LocalResponseNorm from .padding import ConstantPad1d as ConstantPad1d, ConstantPad2d as ConstantPad2d, ConstantPad3d as ConstantPad3d, \ ReflectionPad1d as ReflectionPad1d, ReflectionPad2d as ReflectionPad2d, ReplicationPad1d as ReplicationPad1d, \ ReplicationPad2d as ReplicationPad2d, ReplicationPad3d as ReplicationPad3d, ZeroPad2d as ZeroPad2d from .pixelshuffle import PixelShuffle as PixelShuffle from .pooling import AdaptiveAvgPool1d as AdaptiveAvgPool1d, AdaptiveAvgPool2d as AdaptiveAvgPool2d, \ AdaptiveAvgPool3d as AdaptiveAvgPool3d, AdaptiveMaxPool1d as AdaptiveMaxPool1d, \ AdaptiveMaxPool2d as AdaptiveMaxPool2d, AdaptiveMaxPool3d as AdaptiveMaxPool3d, AvgPool1d as AvgPool1d, \ AvgPool2d as AvgPool2d, AvgPool3d as AvgPool3d, FractionalMaxPool2d as FractionalMaxPool2d, \ FractionalMaxPool3d as FractionalMaxPool3d, LPPool1d as LPPool1d, LPPool2d as LPPool2d, MaxPool1d as MaxPool1d, \ MaxPool2d as MaxPool2d, MaxPool3d as MaxPool3d, MaxUnpool1d as MaxUnpool1d, MaxUnpool2d as MaxUnpool2d, \ MaxUnpool3d as MaxUnpool3d from .rnn import GRU as GRU, GRUCell as GRUCell, LSTM as LSTM, LSTMCell as LSTMCell, RNN as RNN, RNNBase as RNNBase, \ RNNCell as RNNCell, RNNCellBase as RNNCellBase from .sparse import Embedding as Embedding, EmbeddingBag as EmbeddingBag from .upsampling import Upsample as Upsample, UpsamplingBilinear2d as UpsamplingBilinear2d, \ UpsamplingNearest2d as UpsamplingNearest2d
總結
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
pytorch MSELoss計算平均的實現(xiàn)方法
這篇文章主要介紹了pytorch MSELoss計算平均的實現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-05-05教你使用Sublime text3搭建Python開發(fā)環(huán)境及常用插件安裝另分享Sublime text3最新激活注冊碼
這篇文章主要介紹了使用Sublime text 3搭建Python開發(fā)環(huán)境及常用插件安裝,并提供了最新Sublime text 3激活注冊碼需要的朋友可以參考下2020-11-11Pygame游戲開發(fā)之太空射擊實戰(zhàn)子彈與碰撞處理篇
相信大多數(shù)8090后都玩過太空射擊游戲,在過去游戲不多的年代太空射擊自然屬于經(jīng)典好玩的一款了,今天我們來自己動手實現(xiàn)它,在編寫學習中回顧過往展望未來,下面開始講解子彈與碰撞處理,在本課中,我們將添加玩家與敵人之間的碰撞,以及添加供玩家射擊的子彈2022-08-08