欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

pytorch1.60 torch.nn在pycharm中無法自動智能提示的解決

 更新時間:2024年02月26日 11:13:46   作者:雪的期許  
這篇文章主要介紹了pytorch1.60 torch.nn在pycharm中無法自動智能提示的解決方案,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教

問題描述

安裝了pytorch最新版本1.6之后,在pycharm中編輯python代碼時,輸入torch.nn.看不到提示了,比如torch.nn.MSELoss()

而在1.4及以前的版本中,直接輸入torch.nn.就會自動提示出很多torch.nn.modules中的API。

該問題的討論在前幾年有過不少,但都是基于老版本,經(jīng)過嘗試,對于1.6版本是無效的。

原因分析

pycharm的自動提示是根據(jù)第三方包的每個文件夾下的__init__.pyi文件來顯示的,只有__init__.pyi中import了的API才會被pycharm自動提示。

首先對pytorch.nn模塊要知道,問題描述中提到的MSELoss等眾多函數(shù),真實位置是torch.nn.modules.MSELoss(),你直接調用這個真實位置是可以自動提示的。

但是1.4及以前的版本中大家都熟悉了直接用nn.MSELoss()這樣調用,如何讓1.6版本也能像歷史版本一樣提示呢?

基于此,我對比了1.6和1.4的區(qū)別。

在torch 1.6版本包存放位置下,torch/nn/下是有__init__.pyi的,里面有一行from .modules import *,說明nn模塊是可以直接調用子模塊modules中的API的,所以直接調用nn.MSELoss()不會報錯,只是不會自動提示。

然后在進入torch/nn/modules/發(fā)現(xiàn),1.6版本中缺少__init__.pyi文件,所以在pycharm輸入nn.的時候并不會提示子模塊modules中的API。

解決方案

從pytorch 1.4版本中復制一份__init__.pyi文件到1.6版本的依賴包的相同目錄下。

具體位置是:

{你的第三方包存放位置}/Lib/site-packages/torch/nn/modules/__init__.pyi

然后就可以在pycharm中愉快使用nn.自動提示了。其他模塊不自動提示的,解決方法類同。

補充

關于解決方案中第三方包存放位置不知道的,可以在pycharm左側項目目錄結構中看到一項External Libraries,點開它,你就能直接找到Lib/site-packages/torch/nn/modules/,從而不必去資源管理器找。

附件 __init__.pyi

from .module import Module as Module
from .activation import CELU as CELU, ELU as ELU, GLU as GLU, GELU as GELU, Hardshrink as Hardshrink, \
    Hardtanh as Hardtanh, LeakyReLU as LeakyReLU, LogSigmoid as LogSigmoid, LogSoftmax as LogSoftmax, PReLU as PReLU, \
    RReLU as RReLU, ReLU as ReLU, ReLU6 as ReLU6, SELU as SELU, Sigmoid as Sigmoid, Softmax as Softmax, \
    Softmax2d as Softmax2d, Softmin as Softmin, Softplus as Softplus, Softshrink as Softshrink, Softsign as Softsign, \
    Tanh as Tanh, Tanhshrink as Tanhshrink, Threshold as Threshold
from .adaptive import AdaptiveLogSoftmaxWithLoss as AdaptiveLogSoftmaxWithLoss
from .batchnorm import BatchNorm1d as BatchNorm1d, BatchNorm2d as BatchNorm2d, BatchNorm3d as BatchNorm3d, \
    SyncBatchNorm as SyncBatchNorm
from .container import Container as Container, ModuleDict as ModuleDict, ModuleList as ModuleList, \
    ParameterDict as ParameterDict, ParameterList as ParameterList, Sequential as Sequential
from .conv import Conv1d as Conv1d, Conv2d as Conv2d, Conv3d as Conv3d, ConvTranspose1d as ConvTranspose1d, \
    ConvTranspose2d as ConvTranspose2d, ConvTranspose3d as ConvTranspose3d
from .distance import CosineSimilarity as CosineSimilarity, PairwiseDistance as PairwiseDistance
from .dropout import AlphaDropout as AlphaDropout, Dropout as Dropout, Dropout2d as Dropout2d, Dropout3d as Dropout3d, \
    FeatureAlphaDropout as FeatureAlphaDropout
from .fold import Fold as Fold, Unfold as Unfold
from .instancenorm import InstanceNorm1d as InstanceNorm1d, InstanceNorm2d as InstanceNorm2d, \
    InstanceNorm3d as InstanceNorm3d
from .linear import Bilinear as Bilinear, Identity as Identity, Linear as Linear
from .loss import BCELoss as BCELoss, BCEWithLogitsLoss as BCEWithLogitsLoss, CTCLoss as CTCLoss, \
    CosineEmbeddingLoss as CosineEmbeddingLoss, CrossEntropyLoss as CrossEntropyLoss, \
    HingeEmbeddingLoss as HingeEmbeddingLoss, KLDivLoss as KLDivLoss, L1Loss as L1Loss, MSELoss as MSELoss, \
    MarginRankingLoss as MarginRankingLoss, MultiLabelMarginLoss as MultiLabelMarginLoss, \
    MultiLabelSoftMarginLoss as MultiLabelSoftMarginLoss, MultiMarginLoss as MultiMarginLoss, NLLLoss as NLLLoss, \
    NLLLoss2d as NLLLoss2d, PoissonNLLLoss as PoissonNLLLoss, SmoothL1Loss as SmoothL1Loss, \
    SoftMarginLoss as SoftMarginLoss, TripletMarginLoss as TripletMarginLoss
from .module import Module as Module
from .normalization import CrossMapLRN2d as CrossMapLRN2d, GroupNorm as GroupNorm, LayerNorm as LayerNorm, \
    LocalResponseNorm as LocalResponseNorm
from .padding import ConstantPad1d as ConstantPad1d, ConstantPad2d as ConstantPad2d, ConstantPad3d as ConstantPad3d, \
    ReflectionPad1d as ReflectionPad1d, ReflectionPad2d as ReflectionPad2d, ReplicationPad1d as ReplicationPad1d, \
    ReplicationPad2d as ReplicationPad2d, ReplicationPad3d as ReplicationPad3d, ZeroPad2d as ZeroPad2d
from .pixelshuffle import PixelShuffle as PixelShuffle
from .pooling import AdaptiveAvgPool1d as AdaptiveAvgPool1d, AdaptiveAvgPool2d as AdaptiveAvgPool2d, \
    AdaptiveAvgPool3d as AdaptiveAvgPool3d, AdaptiveMaxPool1d as AdaptiveMaxPool1d, \
    AdaptiveMaxPool2d as AdaptiveMaxPool2d, AdaptiveMaxPool3d as AdaptiveMaxPool3d, AvgPool1d as AvgPool1d, \
    AvgPool2d as AvgPool2d, AvgPool3d as AvgPool3d, FractionalMaxPool2d as FractionalMaxPool2d, \
    FractionalMaxPool3d as FractionalMaxPool3d, LPPool1d as LPPool1d, LPPool2d as LPPool2d, MaxPool1d as MaxPool1d, \
    MaxPool2d as MaxPool2d, MaxPool3d as MaxPool3d, MaxUnpool1d as MaxUnpool1d, MaxUnpool2d as MaxUnpool2d, \
    MaxUnpool3d as MaxUnpool3d
from .rnn import GRU as GRU, GRUCell as GRUCell, LSTM as LSTM, LSTMCell as LSTMCell, RNN as RNN, RNNBase as RNNBase, \
    RNNCell as RNNCell, RNNCellBase as RNNCellBase
from .sparse import Embedding as Embedding, EmbeddingBag as EmbeddingBag
from .upsampling import Upsample as Upsample, UpsamplingBilinear2d as UpsamplingBilinear2d, \
    UpsamplingNearest2d as UpsamplingNearest2d

總結

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關文章

  • pytorch MSELoss計算平均的實現(xiàn)方法

    pytorch MSELoss計算平均的實現(xiàn)方法

    這篇文章主要介紹了pytorch MSELoss計算平均的實現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2021-05-05
  • Python全棧之運算符詳解

    Python全棧之運算符詳解

    這篇文章主要為大家介紹了Python運算符,具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2021-12-12
  • python?tkinter中的Frame控件用法詳解

    python?tkinter中的Frame控件用法詳解

    Tkinter中的Frame控件是一個用于組織和管理其他控件的容器,它可以將其他控件放置在自己內部,用于創(chuàng)建更復雜的用戶界面,要創(chuàng)建一個Frame控件,可以使用Tkinter的Frame類,所以本文就通過一個簡單的示例給大家介紹一下
    2023-08-08
  • 一文帶你掌握Python中多線程和線程池的使用方法

    一文帶你掌握Python中多線程和線程池的使用方法

    Python中的多線程和線程池是其強大的功能之一,可以讓我們更加高效地利用CPU資源,提高程序的運行速度。本文將介紹Python中多線程和線程池的使用方法,并提供一些實用的案例供讀者參考
    2023-04-04
  • python實現(xiàn)接口并發(fā)測試腳本

    python實現(xiàn)接口并發(fā)測試腳本

    這篇文章主要為大家詳細介紹了python實現(xiàn)接口并發(fā)測試腳本,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-06-06
  • python關鍵字and和or用法實例

    python關鍵字and和or用法實例

    這篇文章主要介紹了python關鍵字and和or用法實例,本文直接給出實現(xiàn)代碼,需要的朋友可以參考下
    2015-05-05
  • Python動態(tài)演示旋轉矩陣的作用詳解

    Python動態(tài)演示旋轉矩陣的作用詳解

    一個矩陣我們想讓它通過編程,實現(xiàn)各種花樣的變化怎么辦呢?下面這篇文章主要給大家介紹了關于Python動態(tài)演示旋轉矩陣的作用,文中通過示例代碼介紹的非常詳細,需要的朋友可以參考下
    2022-12-12
  • 教你使用Sublime text3搭建Python開發(fā)環(huán)境及常用插件安裝另分享Sublime text3最新激活注冊碼

    教你使用Sublime text3搭建Python開發(fā)環(huán)境及常用插件安裝另分享Sublime text3最新激活注冊碼

    這篇文章主要介紹了使用Sublime text 3搭建Python開發(fā)環(huán)境及常用插件安裝,并提供了最新Sublime text 3激活注冊碼需要的朋友可以參考下
    2020-11-11
  • Django設置Postgresql的操作

    Django設置Postgresql的操作

    這篇文章主要介紹了Django設置Postgresql的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-05-05
  • Pygame游戲開發(fā)之太空射擊實戰(zhàn)子彈與碰撞處理篇

    Pygame游戲開發(fā)之太空射擊實戰(zhàn)子彈與碰撞處理篇

    相信大多數(shù)8090后都玩過太空射擊游戲,在過去游戲不多的年代太空射擊自然屬于經(jīng)典好玩的一款了,今天我們來自己動手實現(xiàn)它,在編寫學習中回顧過往展望未來,下面開始講解子彈與碰撞處理,在本課中,我們將添加玩家與敵人之間的碰撞,以及添加供玩家射擊的子彈
    2022-08-08

最新評論