Python實(shí)現(xiàn)線性擬合及繪圖的示例代碼
當(dāng)時(shí)的數(shù)字地形實(shí)驗(yàn),使用 matplotlib庫(kù)繪制了一張圖表表示不同地形類別在不同分辨率下的RMSE值,并分別擬合了一條趨勢(shì)線?,F(xiàn)在來(lái)看不足就是地形較多時(shí),需要使用循環(huán)更好一點(diǎn),不然太冗余了。
環(huán)境:Python 3.9
代碼邏輯
導(dǎo)入所需庫(kù)以及初步設(shè)置
# coding=gbk # -*- coding = utf-8 -*- import matplotlib.pyplot as plt import numpy as np plt.subplots_adjust(left=0.05, right=0.7, top=0.9, bottom=0.1) plt.rcParams['font.sans-serif'] = ['SimHei']
準(zhǔn)備數(shù)據(jù)(這里僅展示部分)
resolutions = [50, 100, 150, 200, 250] plain = [0, 0, 1, 1, 1] hill = [2.645751311, 7.071067812, 10.44030651, 11.48912529, 14.4222051]
這里可以改為在Excel中讀取,尤其是數(shù)據(jù)多的時(shí)候
分別繪制不同數(shù)據(jù)的趨勢(shì)線
# 繪制平原趨勢(shì)線 coefficients_plain = np.polyfit(resolutions, plain, 1) poly_plain = np.poly1d(coefficients_plain) plt.plot(resolutions, plain, '^', label="平原") plt.plot(resolutions, poly_plain(resolutions), label="平原趨勢(shì)線") # 繪制丘陵趨勢(shì)線 coefficients_hill = np.polyfit(resolutions, hill, 1) poly_hill = np.poly1d(coefficients_hill) plt.plot(resolutions, hill, '^', label="丘陵") plt.plot(resolutions, poly_hill(resolutions), label="丘陵趨勢(shì)線")
使用np.polyfit函數(shù)擬合一階多項(xiàng)式(直線),然后使用np.poly1d構(gòu)造多項(xiàng)式對(duì)象。繪制原始數(shù)據(jù)點(diǎn)(用’^'標(biāo)記)和對(duì)應(yīng)的擬合趨勢(shì)線。
計(jì)算指標(biāo)
# 計(jì)算平原趨勢(shì)線的r值和r方 residuals_plain = plain - poly_plain(resolutions) ss_residuals_plain = np.sum(residuals_plain**2) ss_total_plain = np.sum((plain - np.mean(plain))**2) r_squared_plain = 1 - (ss_residuals_plain / ss_total_plain) r_plain = np.sqrt(r_squared_plain) # 計(jì)算丘陵趨勢(shì)線的r值和r方 residuals_hill = hill - poly_hill(resolutions) ss_residuals_hill = np.sum(residuals_hill**2) ss_total_hill = np.sum((hill - np.mean(hill))**2) r_squared_hill = 1 - (ss_residuals_hill / ss_total_hill) r_hill = np.sqrt(r_squared_hill)
計(jì)算得到r方和r值
繪圖和打印指標(biāo)
# 設(shè)置圖例和標(biāo)題
plt.legend()
plt.legend(loc='center left', bbox_to_anchor=(1.05, 0.5))
plt.title("地形趨勢(shì)線")
# 設(shè)置坐標(biāo)軸標(biāo)題
new_ticks = np.arange(50, 251, 50)
plt.xticks(new_ticks)
plt.xlabel('分辨率(m)')
plt.ylabel('RMSE')
formula1 = "平原:{}".format(poly_plain)
plt.text(0.05, 0.95, formula1, transform=plt.gca().transAxes,
fontsize=10, verticalalignment='top')
formula1 = "丘陵:{}".format(poly_hill)
plt.text(0.35, 0.95, formula1, transform=plt.gca().transAxes,
fontsize=10, verticalalignment='top')
# 顯示圖形
plt.figure(figsize=(10, 10))
plt.show()
# 打印
print("平原趨勢(shì)線公式:", poly_plain)
print("丘陵趨勢(shì)線公式:", poly_hill)
print("平原趨勢(shì)線:")
print("r值:", r_plain)
print("r方:", r_squared_plain)
print()
print("丘陵趨勢(shì)線:")
print("r值:", r_hill)
print("r方:", r_squared_hill)
print()
完整代碼
# coding=gbk
# -*- coding = utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
plt.subplots_adjust(left=0.05, right=0.7, top=0.9, bottom=0.1)
plt.rcParams['font.sans-serif'] = ['SimHei']
resolutions = [50, 100, 150, 200, 250]
plain = [0, 0, 1, 1, 1]
hill = [2.645751311, 7.071067812, 10.44030651, 11.48912529, 14.4222051]
# 繪制平原趨勢(shì)線
coefficients_plain = np.polyfit(resolutions, plain, 1)
poly_plain = np.poly1d(coefficients_plain)
plt.plot(resolutions, plain, '^', label="平原")
plt.plot(resolutions, poly_plain(resolutions), label="平原趨勢(shì)線")
# 繪制丘陵趨勢(shì)線
coefficients_hill = np.polyfit(resolutions, hill, 1)
poly_hill = np.poly1d(coefficients_hill)
plt.plot(resolutions, hill, '^', label="丘陵")
plt.plot(resolutions, poly_hill(resolutions), label="丘陵趨勢(shì)線")
# 計(jì)算平原趨勢(shì)線的r值和r方
residuals_plain = plain - poly_plain(resolutions)
ss_residuals_plain = np.sum(residuals_plain**2)
ss_total_plain = np.sum((plain - np.mean(plain))**2)
r_squared_plain = 1 - (ss_residuals_plain / ss_total_plain)
r_plain = np.sqrt(r_squared_plain)
# 計(jì)算丘陵趨勢(shì)線的r值和r方
residuals_hill = hill - poly_hill(resolutions)
ss_residuals_hill = np.sum(residuals_hill**2)
ss_total_hill = np.sum((hill - np.mean(hill))**2)
r_squared_hill = 1 - (ss_residuals_hill / ss_total_hill)
r_hill = np.sqrt(r_squared_hill)
# 設(shè)置圖例和標(biāo)題
plt.legend()
plt.legend(loc='center left', bbox_to_anchor=(1.05, 0.5))
plt.title("地形趨勢(shì)線")
# 設(shè)置坐標(biāo)軸標(biāo)題
new_ticks = np.arange(50, 251, 50)
plt.xticks(new_ticks)
plt.xlabel('分辨率(m)')
plt.ylabel('RMSE')
formula1 = "平原:{}".format(poly_plain)
plt.text(0.05, 0.95, formula1, transform=plt.gca().transAxes,
fontsize=10, verticalalignment='top')
formula1 = "丘陵:{}".format(poly_hill)
plt.text(0.35, 0.95, formula1, transform=plt.gca().transAxes,
fontsize=10, verticalalignment='top')
# 顯示圖形
plt.figure(figsize=(10, 10))
plt.show()
# 打印
print("平原趨勢(shì)線公式:", poly_plain)
print("丘陵趨勢(shì)線公式:", poly_hill)
print("平原趨勢(shì)線:")
print("r值:", r_plain)
print("r方:", r_squared_plain)
print()
print("丘陵趨勢(shì)線:")
print("r值:", r_hill)
print("r方:", r_squared_hill)
print()
結(jié)果

參考
到此這篇關(guān)于Python實(shí)現(xiàn)線性擬合及繪圖的示例代碼的文章就介紹到這了,更多相關(guān)Python 線性擬合及繪圖內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
淺談python 中的 type(), dtype(), astype()的區(qū)別
這篇文章主要介紹了淺談python 中的 type(), dtype(), astype()的區(qū)別,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-04-04
Python讀取配置文件(config.ini)以及寫入配置文件
這篇文章主要介紹了Python讀取配置文件(config.ini)以及寫入配置文件,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-04-04
Python的shutil模塊中文件的復(fù)制操作函數(shù)詳解
shutil被定義為Python中的一個(gè)高級(jí)的文件操作模塊,擁有比os模塊中更強(qiáng)大的函數(shù),這里我們就來(lái)看一下Python的shutil模塊中文件的復(fù)制操作函數(shù)詳解2016-07-07
python3利用venv配置虛擬環(huán)境及過(guò)程中的小問(wèn)題小結(jié)
這篇文章主要介紹了python3利用venv配置虛擬環(huán)境及過(guò)程中的小問(wèn)題小結(jié),小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2018-08-08
利用Python實(shí)現(xiàn)從PDF到CSV的轉(zhuǎn)換
將PDF轉(zhuǎn)換為CSV極大地提升了數(shù)據(jù)的實(shí)用價(jià)值,Python作為一種強(qiáng)大的編程語(yǔ)言,能夠高效完成這一轉(zhuǎn)換任務(wù),本文將介紹如何利用Python實(shí)現(xiàn)從PDF到CSV的轉(zhuǎn)換,需要的朋友可以參考下2024-07-07
基于Python編寫一個(gè)有趣的年會(huì)抽獎(jiǎng)系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了如何使用Python編寫一個(gè)簡(jiǎn)易的抽獎(jiǎng)系統(tǒng),順便幫助大家鞏固一下對(duì)Python語(yǔ)法和框架的理解,感興趣的小伙伴可以了解下2023-12-12

