Pytorch之上/下采樣函數(shù)torch.nn.functional.interpolate插值詳解
Pytorch上/下采樣函數(shù)torch.nn.functional.interpolate插值
torch.nn.functional.interpolate(input_tensor, size=None, scale_factor=8, mode='bilinear', align_corners=False) ''' Down/up samples the input to either the given size or the given scale_factor The algorithm used for interpolation is determined by mode. Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width. The modes available for resizing are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only), area '''
這個函數(shù)是用來上采樣
或下采樣
tensor的空間維度(h,w)
:
input_tensor
支持輸入3D (b, c, w)或(batch,seq_len,dim)
、4D (b, c, h, w)
、5D (b, c, f, h, w)
的 tensor shape。其中b表示batch_size,c表示channel,f表示frames,h表示height,w表示weight。
size
是目標tensor的(w)/(h,w)/(f,h,w)
的形狀;scale_factor
是采樣tensor的saptial shape(w)/(h,w)/(f,h,w)
的縮放系數(shù),size
和scale_factor
兩個參數(shù)只能定義一個,具體是上采樣,還是下采樣根據這兩個參數(shù)判斷。如果size
或者scale_factor
是list序列
,則必須匹配輸入的大小。
- 如果輸入3D,則它們的序列長度必須是1(只縮放最后1個維度w)。
- 如果輸入4D,則它們的序列長度必須是2(縮放最后2個維度h,w)。
- 如果輸入是5D,則它們的序列長度必須是3(縮放最后3個維度f,h,w)。
插值算法mode
可選:最近鄰(nearest, 默認)
、線性(linear, 3D-only)
、雙線性(bilinear, 4D-only)
、三線性(trilinear, 5D-only)
等等。
是否align_corners
對齊角點:可選的bool值, 如果 align_corners=True
,則對齊 input 和 output 的角點像素(corner pixels),保持在角點像素的值. 只會對 mode=linear, bilinear, trilinear
有作用. 默認是 False。一圖看懂align_corners
=True
與False
的區(qū)別,從4×4上采樣成8×8。
一個是按四角的像素點中心對齊,另一個是按四角的像素角點對齊:
import torch import torch.nn.functional as F b, c, f, h, w = 1, 3, 8, 64, 64
1. upsample/downsample 3D tensor
# interpolate 3D tensor x = torch.randn([b, c, w]) ## downsample to (b, c, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=0.5, mode='linear') # only 3D y3 = F.interpolate(x, size=[w//2], mode='linear') # only 3D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) torch.Size([1, 3, 32]) ## upsample to (b, c, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.interpolate(x, size=[w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='linear') # only 3D y3 = F.interpolate(x, size=[w*2], mode='linear') # only 3D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 128]) torch.Size([1, 3, 128]) torch.Size([1, 3, 128]) torch.Size([1, 3, 128])
2. upsample/downsample 4D tensor
# interpolate 4D tensor x = torch.randn(b, c, h, w) ## downsample to (b, c, h/2, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[h//2, w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=0.5, mode='bilinear') # only 4D y3 = F.interpolate(x, size=[h//2, w//2], mode='bilinear') # only 4D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) torch.Size([1, 3, 32, 32]) ## upsample to (b, c, h*2, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.interpolate(x, size=[h*2, w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='bilinear') # only 4D y3 = F.interpolate(x, size=[h*2, w*2], mode='bilinear') # only 4D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128]) torch.Size([1, 3, 128, 128])
3. upsample/downsample 5D tensor
# interpolate 5D tensor x = torch.randn(b, c, f, h, w) ## downsample to (b, c, f/2, h/2, w/2) y0 = F.interpolate(x, scale_factor=0.5, mode='nearest') y1 = F.interpolate(x, size=[f//2, h//2, w//2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='trilinear') # only 5D y3 = F.interpolate(x, size=[f//2, h//2, w//2], mode='trilinear') # only 5D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 4, 32, 32]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 4, 32, 32]) ## upsample to (b, c, f*2, h*2, w*2) y0 = F.interpolate(x, scale_factor=2, mode='nearest') y1 = F.interpolate(x, size=[f*2, h*2, w*2], mode='nearest') y2 = F.interpolate(x, scale_factor=2, mode='trilinear') # only 5D y3 = F.interpolate(x, size=[f*2, h*2, w*2], mode='trilinear') # only 5D print(y0.shape, y1.shape, y2.shape, y3.shape) # torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128]) torch.Size([1, 3, 16, 128, 128])
總結
以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
Python 通過監(jiān)聽端口實現(xiàn)唯一腳本運行方式
這篇文章主要介紹了Python 通過監(jiān)聽端口實現(xiàn)唯一腳本運行方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05Gauss-Seidel迭代算法的Python實現(xiàn)詳解
這篇文章主要介紹了Gauss-Seidel迭代算法的Python實現(xiàn)詳解,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2019-06-06python初學之用戶登錄的實現(xiàn)過程(實例講解)
下面小編就為大家分享一篇python初學之用戶登錄的實現(xiàn)過程(實例講解),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2017-12-12