Python?Transformers庫(kù)(NLP處理庫(kù))案例代碼講解
以下是一份關(guān)于 transformers
庫(kù)的全面講解,包含基礎(chǔ)知識(shí)、高級(jí)用法、案例代碼及學(xué)習(xí)路徑。內(nèi)容經(jīng)過(guò)組織,適合不同階段的學(xué)習(xí)者。
一、基礎(chǔ)知識(shí)
1. Transformers 庫(kù)簡(jiǎn)介
- 作用:提供預(yù)訓(xùn)練模型(如 BERT、GPT、RoBERTa)和工具,用于 NLP 任務(wù)(文本分類(lèi)、翻譯、生成等)。
- 核心組件:
Tokenizer
:文本分詞與編碼Model
:神經(jīng)網(wǎng)絡(luò)模型架構(gòu)Pipeline
:快速推理的封裝接口
2. 安裝與環(huán)境配置
pip install transformers torch datasets
3. 快速上手示例
from transformers import pipeline # 使用情感分析流水線 classifier = pipeline("sentiment-analysis") result = classifier("I love programming with Transformers!") print(result) # [{'label': 'POSITIVE', 'score': 0.9998}]
二、核心模塊詳解
1. Tokenizer(分詞器)
from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") text = "Hello, world!" encoded = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # 返回PyTorch張量 print(encoded) # {'input_ids': tensor([[101, 7592, 1010, 2088, 999, 102]]), # 'attention_mask': tensor([[1, 1, 1, 1, 1, 1]])}
2. Model(模型加載)
from transformers import AutoModel model = AutoModel.from_pretrained("bert-base-uncased") outputs = model(**encoded) # 前向傳播 last_hidden_states = outputs.last_hidden_state
三、高級(jí)用法
1. 自定義模型訓(xùn)練(PyTorch示例)
from transformers import BertForSequenceClassification, Trainer, TrainingArguments from datasets import load_dataset # 加載數(shù)據(jù)集 dataset = load_dataset("imdb") tokenized_datasets = dataset.map( lambda x: tokenizer(x["text"], padding=True, truncation=True), batched=True ) # 定義模型 model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) # 訓(xùn)練參數(shù)配置 training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, evaluation_strategy="epoch" ) # 訓(xùn)練器配置 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"] ) # 開(kāi)始訓(xùn)練 trainer.train()
2. 模型保存與加載
model.save_pretrained("./my_model") tokenizer.save_pretrained("./my_model") # 加載自定義模型 new_model = AutoModel.from_pretrained("./my_model")
四、深入進(jìn)階
1. 注意力機(jī)制可視化
from transformers import BertModel, BertTokenizer import torch model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True) inputs = tokenizer("The cat sat on the mat", return_tensors="pt") outputs = model(**inputs) # 提取第0層的注意力權(quán)重 attention = outputs.attentions[0][0] print(attention.shape) # [num_heads, seq_len, seq_len]
2. 混合精度訓(xùn)練
from transformers import TrainingArguments training_args = TrainingArguments( fp16=True, # 啟用混合精度 ... )
五、完整案例:命名實(shí)體識(shí)別(NER)
from transformers import pipeline # 加載NER流水線 ner_pipeline = pipeline("ner", model="dslim/bert-base-NER") text = "Apple was founded by Steve Jobs in Cupertino." results = ner_pipeline(text) # 結(jié)果可視化 for entity in results: print(f"{entity['word']} -> {entity['entity']} (confidence: {entity['score']:.2f})")
六、學(xué)習(xí)路徑建議
入門(mén)階段:
- 官方文檔:huggingface.co/docs/transformers
- 學(xué)習(xí)
pipeline
和基礎(chǔ)模型使用
中級(jí)階段:
- 掌握自定義訓(xùn)練流程
- 理解模型架構(gòu)(Transformer、BERT原理)
高級(jí)階段:
- 模型蒸餾與量化
- 自定義模型架構(gòu)開(kāi)發(fā)
- 大模型微調(diào)技巧
七、資源推薦
必讀論文:
- 《Attention Is All You Need》(Transformer 原始論文)
- 《BERT: Pre-training of Deep Bidirectional Transformers》
實(shí)踐項(xiàng)目:
- 文本摘要生成
- 多語(yǔ)言翻譯系統(tǒng)
- 對(duì)話(huà)機(jī)器人開(kāi)發(fā)
社區(qū)資源:
- Hugging Face Model Hub
- Kaggle NLP 競(jìng)賽案例
八、高級(jí)訓(xùn)練技巧
1. 學(xué)習(xí)率調(diào)度與梯度裁剪
在訓(xùn)練過(guò)程中動(dòng)態(tài)調(diào)整學(xué)習(xí)率,防止梯度爆炸:
from transformers import TrainingArguments training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, weight_decay=0.01, warmup_steps=500, # 學(xué)習(xí)率預(yù)熱步數(shù) gradient_accumulation_steps=2, # 梯度累積(節(jié)省顯存) gradient_clipping=1.0, # 梯度裁剪閾值 ... )
2. 自定義損失函數(shù)(PyTorch示例)
import torch from transformers import BertForSequenceClassification class CustomModel(BertForSequenceClassification): def __init__(self, config): super().__init__(config) def forward(self, input_ids, attention_mask, labels=None): outputs = super().forward(input_ids, attention_mask) logits = outputs.logits if labels is not None: loss_fct = torch.nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0])) # 類(lèi)別權(quán)重 loss = loss_fct(logits.view(-1, 2), labels.view(-1)) return {"loss": loss, "logits": logits} return outputs
九、復(fù)雜任務(wù)實(shí)戰(zhàn)
1. 文本生成(GPT-2示例)
from transformers import GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") prompt = "In a world where AI dominates," input_ids = tokenizer.encode(prompt, return_tensors="pt") # 生成文本(配置生成參數(shù)) output = model.generate( input_ids, max_length=100, temperature=0.7, # 控制隨機(jī)性(低值更確定) top_k=50, # 限制候選詞數(shù)量 num_return_sequences=3 # 生成3個(gè)不同結(jié)果 ) for seq in output: print(tokenizer.decode(seq, skip_special_tokens=True))
2. 問(wèn)答系統(tǒng)(BERT-based)
from transformers import pipeline qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2") context = """ Hugging Face is a company based in New York City. Its Transformers library is widely used in NLP. """ question = "Where is Hugging Face located?" result = qa_pipeline(question=question, context=context) print(f"Answer: {result['answer']} (score: {result['score']:.2f})") # Answer: New York City (score: 0.92)
十、模型優(yōu)化與部署
1. 模型量化(減小推理延遲)
from transformers import BertModel, AutoTokenizer import torch model = BertModel.from_pretrained("bert-base-uncased") quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, # 量化所有線性層 dtype=torch.qint8 ) # 量化后推理速度提升2-4倍,模型體積減少約75%
2. ONNX 格式導(dǎo)出(生產(chǎn)部署)
from transformers import BertTokenizer, BertForSequenceClassification from torch.onnx import export model = BertForSequenceClassification.from_pretrained("bert-base-uncased") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # 示例輸入 dummy_input = tokenizer("This is a test", return_tensors="pt") # 導(dǎo)出為ONNX export( model, (dummy_input["input_ids"], dummy_input["attention_mask"]), "model.onnx", opset_version=13, input_names=["input_ids", "attention_mask"], output_names=["logits"], dynamic_axes={"input_ids": {0: "batch"}, "attention_mask": {0: "batch"}} )
十一、調(diào)試與性能分析
1. 檢查顯存占用
import torch # 在訓(xùn)練循環(huán)中插入顯存監(jiān)控 print(f"Allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB") print(f"Cached: {torch.cuda.memory_reserved() / 1e9:.2f} GB")
2. 使用 PyTorch Profiler
from torch.profiler import profile, record_function, ProfilerActivity with profile(activities=[ProfilerActivity.CUDA], record_shapes=True) as prof: outputs = model(**inputs) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
十二、多語(yǔ)言與跨模態(tài)
1. 多語(yǔ)言翻譯(mBART)
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") # 中文轉(zhuǎn)英文 tokenizer.src_lang = "zh_CN" text = "歡迎使用Transformers庫(kù)" encoded = tokenizer(text, return_tensors="pt") generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)) # ['Welcome to the Transformers library']
2. 圖文多模態(tài)(CLIP)
from PIL import Image from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") image = Image.open("cat.jpg") text = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) # 計(jì)算圖文相似度 logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) # 概率分布
十三、學(xué)習(xí)路徑補(bǔ)充
1. 深入理解 Transformer 架構(gòu)
實(shí)現(xiàn)一個(gè)簡(jiǎn)化版 Transformer:
import torch.nn as nn class TransformerBlock(nn.Module): def __init__(self, d_model=512, nhead=8): super().__init__() self.attention = nn.MultiheadAttention(d_model, nhead) self.linear = nn.Linear(d_model, d_model) self.norm = nn.LayerNorm(d_model) def forward(self, x): attn_output, _ = self.attention(x, x, x) x = x + attn_output x = self.norm(x) x = x + self.linear(x) return x
2. 參與開(kāi)源項(xiàng)目
- 貢獻(xiàn) Hugging Face 代碼庫(kù)
- 復(fù)現(xiàn)最新論文模型(如 LLaMA、BLOOM)
十四、常見(jiàn)問(wèn)題解答
1. OOM(顯存不足)錯(cuò)誤處理
解決方案:
- 減小
batch_size
- 啟用梯度累積 (
gradient_accumulation_steps
) - 使用混合精度 (
fp16=True
) - 清理緩存:
torch.cuda.empty_cache()
2. 中文分詞特殊處理
from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-chinese") # 手動(dòng)添加特殊詞匯 tokenizer.add_tokens(["【特殊詞】"]) # 調(diào)整模型嵌入層 model.resize_token_embeddings(len(tokenizer))
以下繼續(xù)擴(kuò)展關(guān)于 transformers
庫(kù)的深度應(yīng)用內(nèi)容,涵蓋更多實(shí)際場(chǎng)景、前沿技術(shù)及工業(yè)級(jí)實(shí)踐方案。
十五、前沿技術(shù)實(shí)踐
1. 大語(yǔ)言模型(LLM)微調(diào)(以 LLaMA 為例)
from transformers import LlamaForCausalLM, LlamaTokenizer, TrainingArguments # 加載模型和分詞器(需申請(qǐng)權(quán)限) model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf") tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") # 低秩適配(LoRA)微調(diào) from peft import get_peft_model, LoraConfig lora_config = LoraConfig( r=8, # 低秩維度 lora_alpha=32, target_modules=["q_proj", "v_proj"], # 僅微調(diào)部分模塊 lora_dropout=0.05, bias="none" ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 顯示可訓(xùn)練參數(shù)占比(通常 <1%) # 繼續(xù)配置訓(xùn)練參數(shù)...
2. 強(qiáng)化學(xué)習(xí)與人類(lèi)反饋(RLHF)
# 使用 TRL 庫(kù)進(jìn)行 RLHF 訓(xùn)練 from trl import PPOTrainer, AutoModelForCausalLMWithValueHead model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2") ppo_trainer = PPOTrainer( model=model, config=training_args, dataset=dataset, tokenizer=tokenizer ) # 定義獎(jiǎng)勵(lì)模型 for epoch in range(3): for batch in ppo_trainer.dataloader: # 生成響應(yīng) response_tensors = model.generate(batch["input_ids"]) # 計(jì)算獎(jiǎng)勵(lì)(需自定義獎(jiǎng)勵(lì)函數(shù)) rewards = calculate_rewards(response_tensors, batch) # PPO 優(yōu)化步驟 ppo_trainer.step( response_tensors, rewards, batch["attention_mask"] )
十六、工業(yè)級(jí)應(yīng)用方案
1. 分布式訓(xùn)練(多GPU/TPU)
from transformers import TrainingArguments # 配置分布式訓(xùn)練 training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=8, fp16=True, tpu_num_cores=8, # 使用TPU時(shí)指定核心數(shù) dataloader_num_workers=4, deepspeed="./configs/deepspeed_config.json" # 使用DeepSpeed優(yōu)化 ) # DeepSpeed 配置文件示例(ds_config.json): { "fp16": { "enabled": true }, "optimizer": { "type": "AdamW", "params": { "lr": 3e-5 } }, "zero_optimization": { "stage": 3 # 啟用ZeRO-3優(yōu)化 } }
2. 流式推理服務(wù)(FastAPI + Transformers)
from fastapi import FastAPI from pydantic import BaseModel from transformers import pipeline app = FastAPI() generator = pipeline("text-generation", model="gpt2") class Request(BaseModel): text: str max_length: int = 100 @app.post("/generate") async def generate_text(request: Request): result = generator(request.text, max_length=request.max_length) return {"generated_text": result[0]["generated_text"]} # 啟動(dòng)服務(wù):uvicorn main:app --port 8000
十七、特殊場(chǎng)景處理
1. 長(zhǎng)文本處理(滑動(dòng)窗口)
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad") model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad") def process_long_text(context, question, max_length=384, stride=128): # 分塊處理長(zhǎng)文本 inputs = tokenizer( question, context, max_length=max_length, truncation="only_second", stride=stride, return_overflowing_tokens=True, return_offsets_mapping=True ) # 對(duì)各塊推理并合并結(jié)果 best_score = 0 best_answer = "" for i in range(len(inputs["input_ids"])): outputs = model(**{k: torch.tensor([v[i]]) for k, v in inputs.items()}) answer_start = torch.argmax(outputs.start_logits) answer_end = torch.argmax(outputs.end_logits) + 1 score = (outputs.start_logits[answer_start] + outputs.end_logits[answer_end-1]).item() if score > best_score: best_score = score best_answer = tokenizer.decode(inputs["input_ids"][i][answer_start:answer_end]) return best_answer
2. 低資源語(yǔ)言處理
# 使用 XLM-RoBERTa 進(jìn)行跨語(yǔ)言遷移 from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base") model = XLMRobertaForSequenceClassification.from_pretrained("xlm-roberta-base") # 通過(guò)少量樣本微調(diào)(代碼與BERT訓(xùn)練類(lèi)似)
十八、模型解釋性
1. 特征重要性分析(使用 Captum)
from captum.attr import LayerIntegratedGradients from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("bert-base-uncased") def forward_func(input_ids, attention_mask): return model(input_ids, attention_mask).logits lig = LayerIntegratedGradients(forward_func, model.bert.embeddings) # 計(jì)算輸入詞重要性 attributions, delta = lig.attribute( inputs=input_ids, baselines=tokenizer.pad_token_id * torch.ones_like(input_ids), additional_forward_args=attention_mask, return_convergence_delta=True ) # 可視化結(jié)果 import matplotlib.pyplot as plt plt.bar(range(len(attributions[0])), attributions[0].detach().numpy()) plt.xticks(ticks=range(len(tokens)), labels=tokens, rotation=90) plt.show()
十九、生態(tài)系統(tǒng)整合
1. 與 spaCy 集成
import spacy from spacy_transformers import TransformersLanguage, TransformersWordPiecer # 創(chuàng)建spacy管道 nlp = TransformersLanguage(trf_name="bert-base-uncased") # 自定義組件 @spacy.registry.architectures("CustomClassifier.v1") def create_classifier(transformer, tok2vec, n_classes): return TransformersTextCategorizer(transformer, tok2vec, n_classes) # 在spacy中直接使用Transformer模型 doc = nlp("This is a text to analyze.") print(doc._.trf_last_hidden_state.shape) # [seq_len, hidden_dim]
2. 使用 Gradio 快速構(gòu)建演示界面
import gradio as gr from transformers import pipeline ner_pipeline = pipeline("ner") def extract_entities(text): results = ner_pipeline(text) return {"text": text, "entities": [ {"entity": res["entity"], "start": res["start"], "end": res["end"]} for res in results ]} gr.Interface( fn=extract_entities, inputs=gr.Textbox(lines=5), outputs=gr.HighlightedText() ).launch()
二十、持續(xù)學(xué)習(xí)建議
跟蹤最新進(jìn)展:
- 關(guān)注 Hugging Face 博客和論文(如 T5、BLOOM、Stable Diffusion)
- 參與社區(qū)活動(dòng)(Hugging Face 的 Discord 和論壇)
實(shí)戰(zhàn)項(xiàng)目進(jìn)階:
- 構(gòu)建端到端 NLP 系統(tǒng)(數(shù)據(jù)清洗 → 模型訓(xùn)練 → 部署監(jiān)控)
- 參加 Kaggle 比賽(如 CommonLit Readability Prize)
系統(tǒng)優(yōu)化方向:
- 模型量化與剪枝
- 服務(wù)端優(yōu)化(TensorRT 加速、模型并行)
- 邊緣設(shè)備部署(ONNX Runtime、Core ML)
以下繼續(xù)擴(kuò)展關(guān)于 transformers
庫(kù)的終極實(shí)踐指南,涵蓋生產(chǎn)級(jí)優(yōu)化、前沿模型架構(gòu)、領(lǐng)域?qū)S梅桨讣皞惱砜剂俊?/p>
二十一、生產(chǎn)級(jí)模型優(yōu)化
1. 模型剪枝與知識(shí)蒸餾
# 使用 nn_pruning 進(jìn)行結(jié)構(gòu)化剪枝 from transformers import BertForSequenceClassification from nn_pruning import ModelPruning model = BertForSequenceClassification.from_pretrained("bert-base-uncased") pruner = ModelPruning( model, target_sparsity=0.5, # 剪枝50%的注意力頭 pattern="block_sparse" # 結(jié)構(gòu)化剪枝模式 ) # 執(zhí)行剪枝并微調(diào) pruned_model = pruner.prune() pruned_model.save_pretrained("./pruned_bert") # 知識(shí)蒸餾(教師→學(xué)生模型) from transformers import DistilBertForSequenceClassification, DistilBertTokenizer teacher = BertForSequenceClassification.from_pretrained("bert-base-uncased") student = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") # 使用蒸餾訓(xùn)練器 from transformers import DistillationTrainingArguments, DistillationTrainer training_args = DistillationTrainingArguments( output_dir="./distilled", temperature=2.0, # 軟化概率分布 alpha_ce=0.5, # 交叉熵?fù)p失權(quán)重 alpha_mse=0.5 # 隱藏層MSE損失權(quán)重 ) trainer = DistillationTrainer( teacher=teacher, student=student, args=training_args, train_dataset=tokenized_datasets["train"], tokenizer=tokenizer ) trainer.train()
2. TensorRT 加速推理
# 轉(zhuǎn)換模型為T(mén)ensorRT引擎 trtexec --onnx=model.onnx --saveEngine=model.trt --fp16
# Python 調(diào)用TensorRT引擎 import tensorrt as trt import pycuda.driver as cuda runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING)) with open("model.trt", "rb") as f: engine = runtime.deserialize_cuda_engine(f.read()) context = engine.create_execution_context() # 綁定輸入輸出緩沖區(qū)進(jìn)行推理
二十二、領(lǐng)域?qū)S媚P?/h2>
1. 生物醫(yī)學(xué)NLP(BioBERT)
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1") model = AutoModelForTokenClassification.from_pretrained("dmis-lab/biobert-v1.1") text = "The patient exhibited EGFR mutations and responded to osimertinib." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs).logits # 提取基因?qū)嶓w predictions = torch.argmax(outputs, dim=2) print([tokenizer.decode([token]) for token in inputs.input_ids[0]]) print(predictions.tolist()) # BIO標(biāo)注結(jié)果
2. 法律文書(shū)解析(Legal-BERT)
# 合同條款分類(lèi) from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased") model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased") clause = "The Parties hereby agree to arbitrate all disputes in accordance with ICC rules." inputs = tokenizer(clause, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item() # 0: 仲裁條款, 1: 保密條款等
二十三、邊緣設(shè)備部署
1. Core ML 轉(zhuǎn)換(iOS部署)
from transformers import BertForSequenceClassification import coremltools as ct model = BertForSequenceClassification.from_pretrained("bert-base-uncased") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # 轉(zhuǎn)換模型 traced_model = torch.jit.trace(model, (input_ids, attention_mask)) mlmodel = ct.convert( traced_model, inputs=[ ct.TensorType(name="input_ids", shape=input_ids.shape), ct.TensorType(name="attention_mask", shape=attention_mask.shape) ] ) mlmodel.save("BertSenti.mlmodel")
2. TensorFlow Lite 量化(Android部署)
from transformers import TFBertForSequenceClassification import tensorflow as tf model = TFBertForSequenceClassification.from_pretrained("bert-base-uncased") # 轉(zhuǎn)換為T(mén)FLite converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] # 動(dòng)態(tài)范圍量化 tflite_model = converter.convert() with open("model_quant.tflite", "wb") as f: f.write(tflite_model)
二十四、倫理與安全
1. 偏見(jiàn)檢測(cè)與緩解
from transformers import pipeline from fairness_metrics import demographic_parity # 檢測(cè)模型偏見(jiàn) classifier = pipeline("text-classification", model="bert-base-uncased") protected_groups = { "gender": ["she", "he"], "race": ["African", "European"] } bias_scores = {} for category, terms in protected_groups.items(): texts = [f"{term} is qualified for this position" for term in terms] results = classifier(texts) bias_scores[category] = demographic_parity(results)
2. 對(duì)抗樣本防御
from textattack import AttackRecipe from textattack.models.wrappers import HuggingFaceModelWrapper model_wrapper = HuggingFaceModelWrapper(model, tokenizer) attack = AttackRecipe.build("bae") # BAE攻擊方法 # 生成對(duì)抗樣本 attack_args = textattack.AttackArgs(num_examples=5) attacker = textattack.Attacker(attack, model_wrapper, attack_args) attack_results = attacker.attack_dataset(dataset)
二十五、前沿架構(gòu)探索
1. Sparse Transformer(處理超長(zhǎng)序列)
from transformers import LongformerModel model = LongformerModel.from_pretrained("allenai/longformer-base-4096") inputs = tokenizer("This is a very long document..."*1000, return_tensors="pt") outputs = model(**inputs) # 支持最長(zhǎng)4096 tokens
2. 混合專(zhuān)家模型(MoE)
# 使用Switch Transformers from transformers import SwitchTransformersForConditionalGeneration model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8") outputs = model.generate( input_ids, expert_choice_mask=True, # 追蹤專(zhuān)家路由 ) print(outputs.expert_choices) # 顯示每個(gè)token使用的專(zhuān)家
二十六、全鏈路項(xiàng)目模板
""" 端到端文本分類(lèi)系統(tǒng)架構(gòu): 1. 數(shù)據(jù)采集 → 2. 清洗 → 3. 標(biāo)注 → 4. 模型訓(xùn)練 → 5. 評(píng)估 → 6. 部署 → 7. 監(jiān)控 """ # 步驟4的增強(qiáng)訓(xùn)練流程 from transformers import TrainerCallback class CustomCallback(TrainerCallback): def on_log(self, args, state, control, logs=None, **kwargs): # 實(shí)時(shí)記錄指標(biāo)到Prometheus prometheus_logger.log_metrics(logs) # 步驟7的漂移檢測(cè) from alibi_detect.cd import MMDDrift detector = MMDDrift( X_train, backend="tensorflow", p_val=0.05 ) drift_preds = detector.predict(X_prod)
二十七、終身學(xué)習(xí)建議
技術(shù)跟蹤:
- 訂閱 arXiv 的 cs.CL 分類(lèi)
- 參與 Hugging Face 社區(qū)周會(huì)
技能擴(kuò)展:
- 學(xué)習(xí)模型量化理論(《Efficient Machine Learning》)
- 掌握 CUDA 編程基礎(chǔ)
跨界融合:
- 探索 LLM 與知識(shí)圖譜結(jié)合
- 研究多模態(tài)大模型(如 Flamingo、DALL·E 3)
倫理實(shí)踐:
- 定期進(jìn)行模型公平性審計(jì)
- 參與 AI for Social Good 項(xiàng)目
到此這篇關(guān)于Python Transformers庫(kù)【NLP處理庫(kù)】全面講解的文章就介紹到這了,更多相關(guān)Python Transformers庫(kù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
使用Python生成隨機(jī)圖片驗(yàn)證碼的代碼詳解
當(dāng)我們?cè)趯?xiě)一個(gè)Web項(xiàng)目的時(shí)候一般要寫(xiě)登錄操作,而為了安全起見(jiàn),現(xiàn)在的登錄功能都會(huì)加上輸入圖片驗(yàn)證碼這一功能,所以本文就給大家介紹一下如何使用Python生成隨機(jī)圖片驗(yàn)證碼,需要的朋友可以參考下2023-07-07Python爬蟲(chóng)實(shí)戰(zhàn)之網(wǎng)易云音樂(lè)加密解析附源碼
讀萬(wàn)卷書(shū)不如行萬(wàn)里路,學(xué)的扎不扎實(shí)要通過(guò)實(shí)戰(zhàn)才能看出來(lái),本篇文章手把手帶你解析網(wǎng)易云音樂(lè)數(shù)據(jù),大家可以在實(shí)戰(zhàn)過(guò)程中更有效的掌握python2021-10-10解決jupyter (python3) 讀取文件遇到的問(wèn)題
這篇文章主要介紹了解決jupyter (python3) 讀取文件遇到的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-03-03Python+PIL實(shí)現(xiàn)批量在圖片上寫(xiě)上自定義文本
Pillow 是一個(gè) Python 的圖像處理庫(kù),它是 Python Imaging Library (PIL) 的一個(gè)分支,并且增加了更多的功能,下面我們看看如何利用它實(shí)現(xiàn)批量在圖片上寫(xiě)上自定義的文本吧2024-11-11python matplotlib繪圖實(shí)現(xiàn)刪除重復(fù)冗余圖例的操作
這篇文章主要介紹了python matplotlib繪圖實(shí)現(xiàn)刪除重復(fù)冗余圖例的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04詳細(xì)過(guò)程帶你用Python做車(chē)牌自動(dòng)識(shí)別系統(tǒng)
這篇文章主要介紹了帶你用Python做車(chē)牌自動(dòng)識(shí)別系統(tǒng)的詳細(xì)過(guò)程,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-08-08