Python中OpenCV綁定庫(kù)的使用方法詳解
引言
OpenCV是一個(gè)開(kāi)源的計(jì)算機(jī)視覺(jué)庫(kù),廣泛應(yīng)用于圖像處理和計(jì)算機(jī)視覺(jué)領(lǐng)域。Python通過(guò)cv2模塊提供了對(duì)OpenCV的綁定,使得開(kāi)發(fā)者可以方便地使用Python進(jìn)行圖像處理和計(jì)算機(jī)視覺(jué)任務(wù)。本文將詳細(xì)介紹Python中OpenCV綁定庫(kù)的使用方法,并提供豐富的示例代碼。
一、安裝OpenCV
首先需要安裝OpenCV庫(kù):
pip install opencv-python
如果需要額外的功能(如SIFT、SURF等專利算法),可以安裝:
pip install opencv-contrib-python
二、基本圖像操作
1. 讀取和顯示圖像
import cv2
# 讀取圖像
img = cv2.imread('image.jpg') # 默認(rèn)BGR格式
# 顯示圖像
cv2.imshow('Image', img)
# 等待按鍵并關(guān)閉窗口
cv2.waitKey(0)
cv2.destroyAllWindows()2. 保存圖像
cv2.imwrite('output.jpg', img) # 保存為JPEG格式3. 獲取圖像信息
print(f"圖像形狀: {img.shape}") # (高度, 寬度, 通道數(shù))
print(f"圖像大小: {img.size} 字節(jié)")
print(f"圖像數(shù)據(jù)類型: {img.dtype}") # 通常是uint8三、圖像基本處理
1. 顏色空間轉(zhuǎn)換
# BGR轉(zhuǎn)灰度
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# BGR轉(zhuǎn)RGB
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 顯示結(jié)果
cv2.imshow('Gray', gray)
cv2.imshow('RGB', rgb)
cv2.waitKey(0)2. 圖像縮放
# 縮放到指定尺寸
resized = cv2.resize(img, (300, 200)) # (寬度, 高度)
# 按比例縮放
scale_percent = 50 # 縮放到50%
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
resized = cv2.resize(img, (width, height))
cv2.imshow('Resized', resized)
cv2.waitKey(0)3. 圖像裁剪
# 裁剪圖像 (y1:y2, x1:x2)
cropped = img[100:400, 200:500]
cv2.imshow('Cropped', cropped)
cv2.waitKey(0)4. 圖像旋轉(zhuǎn)
# 獲取圖像中心
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
# 旋轉(zhuǎn)矩陣
M = cv2.getRotationMatrix2D(center, 45, 1.0) # 旋轉(zhuǎn)45度,縮放1.0
# 應(yīng)用旋轉(zhuǎn)
rotated = cv2.warpAffine(img, M, (w, h))
cv2.imshow('Rotated', rotated)
cv2.waitKey(0)四、圖像濾波
1. 均值模糊
blurred = cv2.blur(img, (5, 5)) # 5x5核大小
cv2.imshow('Blurred', blurred)
cv2.waitKey(0)2. 高斯模糊
gaussian = cv2.GaussianBlur(img, (5, 5), 0) # 核大小5x5,標(biāo)準(zhǔn)差0
cv2.imshow('Gaussian', gaussian)
cv2.waitKey(0)3. 中值模糊
median = cv2.medianBlur(img, 5) # 核大小5
cv2.imshow('Median', median)
cv2.waitKey(0)4. 雙邊濾波
bilateral = cv2.bilateralFilter(img, 9, 75, 75) # 核大小9,顏色和空間sigma
cv2.imshow('Bilateral', bilateral)
cv2.waitKey(0)五、邊緣檢測(cè)
1. Canny邊緣檢測(cè)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200) # 閾值100和200
cv2.imshow('Edges', edges)
cv2.waitKey(0)2. Sobel算子
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) # x方向
grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) # y方向
# 合并梯度
abs_grad_x = cv2.convertScaleAbs(grad_x)
abs_grad_y = cv2.convertScaleAbs(grad_y)
grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
cv2.imshow('Sobel', grad)
cv2.waitKey(0)六、形態(tài)學(xué)操作
1. 膨脹和腐蝕
# 二值化圖像
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 定義核
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
# 膨脹
dilated = cv2.dilate(binary, kernel, iterations=1)
# 腐蝕
eroded = cv2.erode(binary, kernel, iterations=1)
cv2.imshow('Dilated', dilated)
cv2.imshow('Eroded', eroded)
cv2.waitKey(0)2. 開(kāi)運(yùn)算和閉運(yùn)算
# 開(kāi)運(yùn)算(先腐蝕后膨脹)
opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)
# 閉運(yùn)算(先膨脹后腐蝕)
closing = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
cv2.imshow('Opening', opening)
cv2.imshow('Closing', closing)
cv2.waitKey(0)七、特征檢測(cè)與匹配
1. Harris角點(diǎn)檢測(cè)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Harris角點(diǎn)檢測(cè)
corners = cv2.cornerHarris(gray, 2, 3, 0.04)
# 結(jié)果可視化
img_corners = img.copy()
img_corners[corners > 0.01 * corners.max()] = [0, 0, 255]
cv2.imshow('Harris Corners', img_corners)
cv2.waitKey(0)2. SIFT特征檢測(cè)
# 確保安裝了opencv-contrib-python
sift = cv2.SIFT_create()
# 檢測(cè)關(guān)鍵點(diǎn)和描述符
keypoints, descriptors = sift.detectAndCompute(gray, None)
# 繪制關(guān)鍵點(diǎn)
img_sift = cv2.drawKeypoints(img, keypoints, None, color=(0, 255, 0))
cv2.imshow('SIFT Keypoints', img_sift)
cv2.waitKey(0)3. 特征匹配
# 讀取第二張圖像
img2 = cv2.imread('image2.jpg')
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 檢測(cè)關(guān)鍵點(diǎn)和描述符
keypoints2, descriptors2 = sift.detectAndCompute(gray2, None)
# 使用FLANN匹配器
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(descriptors, descriptors2, k=2)
# 應(yīng)用比率測(cè)試
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 繪制匹配結(jié)果
img_matches = cv2.drawMatches(img, keypoints, img2, keypoints2, good, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
cv2.imshow('Feature Matches', img_matches)
cv2.waitKey(0)八、視頻處理
1. 讀取和顯示視頻
cap = cv2.VideoCapture('video.mp4') # 或使用0讀取攝像頭
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.imshow('Video', frame)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()2. 視頻寫(xiě)入
cap = cv2.VideoCapture(0) # 讀取攝像頭
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 處理幀(例如轉(zhuǎn)換為灰度)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
out.write(cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)) # 需要轉(zhuǎn)換回BGR
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
out.release()
cv2.destroyAllWindows()九、圖像分割
1. 閾值分割
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 固定閾值
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 自適應(yīng)閾值
thresh_adapt = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
cv2.imshow('Threshold', thresh)
cv2.imshow('Adaptive Threshold', thresh_adapt)
cv2.waitKey(0)2. 輪廓檢測(cè)
# 二值化圖像
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 查找輪廓
contours, _ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 繪制輪廓
img_contours = img.copy()
cv2.drawContours(img_contours, contours, -1, (0, 255, 0), 2)
cv2.imshow('Contours', img_contours)
cv2.waitKey(0)十、高級(jí)示例:人臉檢測(cè)
# 加載預(yù)訓(xùn)練的人臉檢測(cè)模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# 讀取圖像
img = cv2.imread('face.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 檢測(cè)人臉
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# 繪制矩形框
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.imshow('Face Detection', img)
cv2.waitKey(0)十一、性能優(yōu)化技巧
??使用NumPy操作替代循環(huán)??:
# 不推薦
for i in range(rows):
for j in range(cols):
img[i,j] = [255, 255, 255] if some_condition else [0, 0, 0]
# 推薦
condition = some_condition_array
img = np.where(condition[..., None], [255, 255, 255], [0, 0, 0])??使用inRange進(jìn)行顏色分割??:
# 創(chuàng)建掩膜 lower = np.array([0, 100, 100]) upper = np.array([10, 255, 255]) mask = cv2.inRange(hsv_img, lower, upper)
使用積分圖像加速計(jì)算??:
# 計(jì)算積分圖像 integral = cv2.integral(gray) # 快速計(jì)算矩形區(qū)域和 sum_rect = integral[x2,y2] - integral[x1-1,y2] - integral[x2,y1-1] + integral[x1-1,y1-1]
以上就是Python中OpenCV綁定庫(kù)的使用方法詳解的詳細(xì)內(nèi)容,更多關(guān)于Python OpenCV綁定庫(kù)使用的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
在SAE上部署Python的Django框架的一些問(wèn)題匯總
這篇文章主要介紹了在SAE上部署Python的Django框架的一些問(wèn)題匯總,SAE是新浪的一個(gè)在線APP部署平臺(tái),并且對(duì)Python應(yīng)用提供相關(guān)支持,需要的朋友可以參考下2015-05-05
Python 批量驗(yàn)證和添加手機(jī)號(hào)碼為企業(yè)微信聯(lián)系人
你是否也有過(guò)需要添加很多微信好友的時(shí)候,一個(gè)個(gè)輸入添加太麻煩了,本篇文章手把手教你用Python替我們完成這繁瑣的操作,大家可以在過(guò)程中查缺補(bǔ)漏,看看自己掌握程度怎么樣2021-10-10
詳解Django+Uwsgi+Nginx 實(shí)現(xiàn)生產(chǎn)環(huán)境部署
這篇文章主要介紹了詳解Django+Uwsgi+Nginx 實(shí)現(xiàn)生產(chǎn)環(huán)境部署,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2018-11-11
圖文詳解梯度下降算法的原理及Python實(shí)現(xiàn)
梯度下降是迭代法的一種,可以用于求解最小二乘問(wèn)題(線性和非線性都可以)。本文將通過(guò)圖文詳解梯度下降算法的原理及實(shí)現(xiàn),需要的可以參考一下2022-08-08
python算法與數(shù)據(jù)結(jié)構(gòu)之單鏈表的實(shí)現(xiàn)代碼
鏈表是一種物理存儲(chǔ)單元上非連續(xù)、非順序的存儲(chǔ)結(jié)構(gòu),數(shù)據(jù)元素的邏輯順序是通過(guò)鏈表中的指針鏈接次序?qū)崿F(xiàn)的。這篇文章主要介紹了python算法與數(shù)據(jù)結(jié)構(gòu)之單鏈表的實(shí)現(xiàn)代碼,需要的朋友可以參考下2019-06-06
這篇文章主要為大家介紹了python中selenium模塊的安裝和配置環(huán)境變量教程、提取數(shù)據(jù)操作、無(wú)頭模式,有需要的朋友可以借鑒參考下,希望能夠?qū)Υ蠹矣兴鶐椭?/div> 2022-10-10最新評(píng)論

