Python中OpenCV綁定庫的使用方法詳解
引言
OpenCV是一個開源的計算機視覺庫,廣泛應用于圖像處理和計算機視覺領域。Python通過cv2模塊提供了對OpenCV的綁定,使得開發(fā)者可以方便地使用Python進行圖像處理和計算機視覺任務。本文將詳細介紹Python中OpenCV綁定庫的使用方法,并提供豐富的示例代碼。
一、安裝OpenCV
首先需要安裝OpenCV庫:
pip install opencv-python
如果需要額外的功能(如SIFT、SURF等專利算法),可以安裝:
pip install opencv-contrib-python
二、基本圖像操作
1. 讀取和顯示圖像
import cv2 # 讀取圖像 img = cv2.imread('image.jpg') # 默認BGR格式 # 顯示圖像 cv2.imshow('Image', img) # 等待按鍵并關閉窗口 cv2.waitKey(0) cv2.destroyAllWindows()
2. 保存圖像
cv2.imwrite('output.jpg', img) # 保存為JPEG格式
3. 獲取圖像信息
print(f"圖像形狀: {img.shape}") # (高度, 寬度, 通道數(shù)) print(f"圖像大小: {img.size} 字節(jié)") print(f"圖像數(shù)據(jù)類型: {img.dtype}") # 通常是uint8
三、圖像基本處理
1. 顏色空間轉換
# BGR轉灰度 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # BGR轉RGB rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 顯示結果 cv2.imshow('Gray', gray) cv2.imshow('RGB', rgb) cv2.waitKey(0)
2. 圖像縮放
# 縮放到指定尺寸 resized = cv2.resize(img, (300, 200)) # (寬度, 高度) # 按比例縮放 scale_percent = 50 # 縮放到50% width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) resized = cv2.resize(img, (width, height)) cv2.imshow('Resized', resized) cv2.waitKey(0)
3. 圖像裁剪
# 裁剪圖像 (y1:y2, x1:x2) cropped = img[100:400, 200:500] cv2.imshow('Cropped', cropped) cv2.waitKey(0)
4. 圖像旋轉
# 獲取圖像中心 (h, w) = img.shape[:2] center = (w // 2, h // 2) # 旋轉矩陣 M = cv2.getRotationMatrix2D(center, 45, 1.0) # 旋轉45度,縮放1.0 # 應用旋轉 rotated = cv2.warpAffine(img, M, (w, h)) cv2.imshow('Rotated', rotated) cv2.waitKey(0)
四、圖像濾波
1. 均值模糊
blurred = cv2.blur(img, (5, 5)) # 5x5核大小 cv2.imshow('Blurred', blurred) cv2.waitKey(0)
2. 高斯模糊
gaussian = cv2.GaussianBlur(img, (5, 5), 0) # 核大小5x5,標準差0 cv2.imshow('Gaussian', gaussian) cv2.waitKey(0)
3. 中值模糊
median = cv2.medianBlur(img, 5) # 核大小5 cv2.imshow('Median', median) cv2.waitKey(0)
4. 雙邊濾波
bilateral = cv2.bilateralFilter(img, 9, 75, 75) # 核大小9,顏色和空間sigma cv2.imshow('Bilateral', bilateral) cv2.waitKey(0)
五、邊緣檢測
1. Canny邊緣檢測
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 100, 200) # 閾值100和200 cv2.imshow('Edges', edges) cv2.waitKey(0)
2. Sobel算子
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) # x方向 grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) # y方向 # 合并梯度 abs_grad_x = cv2.convertScaleAbs(grad_x) abs_grad_y = cv2.convertScaleAbs(grad_y) grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0) cv2.imshow('Sobel', grad) cv2.waitKey(0)
六、形態(tài)學操作
1. 膨脹和腐蝕
# 二值化圖像 _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 定義核 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) # 膨脹 dilated = cv2.dilate(binary, kernel, iterations=1) # 腐蝕 eroded = cv2.erode(binary, kernel, iterations=1) cv2.imshow('Dilated', dilated) cv2.imshow('Eroded', eroded) cv2.waitKey(0)
2. 開運算和閉運算
# 開運算(先腐蝕后膨脹) opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel) # 閉運算(先膨脹后腐蝕) closing = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) cv2.imshow('Opening', opening) cv2.imshow('Closing', closing) cv2.waitKey(0)
七、特征檢測與匹配
1. Harris角點檢測
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Harris角點檢測 corners = cv2.cornerHarris(gray, 2, 3, 0.04) # 結果可視化 img_corners = img.copy() img_corners[corners > 0.01 * corners.max()] = [0, 0, 255] cv2.imshow('Harris Corners', img_corners) cv2.waitKey(0)
2. SIFT特征檢測
# 確保安裝了opencv-contrib-python sift = cv2.SIFT_create() # 檢測關鍵點和描述符 keypoints, descriptors = sift.detectAndCompute(gray, None) # 繪制關鍵點 img_sift = cv2.drawKeypoints(img, keypoints, None, color=(0, 255, 0)) cv2.imshow('SIFT Keypoints', img_sift) cv2.waitKey(0)
3. 特征匹配
# 讀取第二張圖像 img2 = cv2.imread('image2.jpg') gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 檢測關鍵點和描述符 keypoints2, descriptors2 = sift.detectAndCompute(gray2, None) # 使用FLANN匹配器 FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(descriptors, descriptors2, k=2) # 應用比率測試 good = [] for m, n in matches: if m.distance < 0.7 * n.distance: good.append(m) # 繪制匹配結果 img_matches = cv2.drawMatches(img, keypoints, img2, keypoints2, good, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) cv2.imshow('Feature Matches', img_matches) cv2.waitKey(0)
八、視頻處理
1. 讀取和顯示視頻
cap = cv2.VideoCapture('video.mp4') # 或使用0讀取攝像頭 while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2.imshow('Video', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
2. 視頻寫入
cap = cv2.VideoCapture(0) # 讀取攝像頭 fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480)) while cap.isOpened(): ret, frame = cap.read() if not ret: break # 處理幀(例如轉換為灰度) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) out.write(cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)) # 需要轉換回BGR cv2.imshow('Video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() out.release() cv2.destroyAllWindows()
九、圖像分割
1. 閾值分割
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 固定閾值 _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 自適應閾值 thresh_adapt = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) cv2.imshow('Threshold', thresh) cv2.imshow('Adaptive Threshold', thresh_adapt) cv2.waitKey(0)
2. 輪廓檢測
# 二值化圖像 _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 查找輪廓 contours, _ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 繪制輪廓 img_contours = img.copy() cv2.drawContours(img_contours, contours, -1, (0, 255, 0), 2) cv2.imshow('Contours', img_contours) cv2.waitKey(0)
十、高級示例:人臉檢測
# 加載預訓練的人臉檢測模型 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # 讀取圖像 img = cv2.imread('face.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 檢測人臉 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 繪制矩形框 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2) cv2.imshow('Face Detection', img) cv2.waitKey(0)
十一、性能優(yōu)化技巧
??使用NumPy操作替代循環(huán)??:
# 不推薦 for i in range(rows): for j in range(cols): img[i,j] = [255, 255, 255] if some_condition else [0, 0, 0] # 推薦 condition = some_condition_array img = np.where(condition[..., None], [255, 255, 255], [0, 0, 0])
??使用inRange進行顏色分割??:
# 創(chuàng)建掩膜 lower = np.array([0, 100, 100]) upper = np.array([10, 255, 255]) mask = cv2.inRange(hsv_img, lower, upper)
使用積分圖像加速計算??:
# 計算積分圖像 integral = cv2.integral(gray) # 快速計算矩形區(qū)域和 sum_rect = integral[x2,y2] - integral[x1-1,y2] - integral[x2,y1-1] + integral[x1-1,y1-1]
以上就是Python中OpenCV綁定庫的使用方法詳解的詳細內容,更多關于Python OpenCV綁定庫使用的資料請關注腳本之家其它相關文章!
相關文章
Python 批量驗證和添加手機號碼為企業(yè)微信聯(lián)系人
你是否也有過需要添加很多微信好友的時候,一個個輸入添加太麻煩了,本篇文章手把手教你用Python替我們完成這繁瑣的操作,大家可以在過程中查缺補漏,看看自己掌握程度怎么樣2021-10-10詳解Django+Uwsgi+Nginx 實現(xiàn)生產(chǎn)環(huán)境部署
這篇文章主要介紹了詳解Django+Uwsgi+Nginx 實現(xiàn)生產(chǎn)環(huán)境部署,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2018-11-11python算法與數(shù)據(jù)結構之單鏈表的實現(xiàn)代碼
鏈表是一種物理存儲單元上非連續(xù)、非順序的存儲結構,數(shù)據(jù)元素的邏輯順序是通過鏈表中的指針鏈接次序實現(xiàn)的。這篇文章主要介紹了python算法與數(shù)據(jù)結構之單鏈表的實現(xiàn)代碼,需要的朋友可以參考下2019-06-06