Python進行數(shù)據(jù)拆分和合并的超詳細指南
一、數(shù)據(jù)拆分詳解
1. 按條件拆分數(shù)據(jù)
1.1 單條件拆分
import pandas as pd # 創(chuàng)建示例數(shù)據(jù) data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace'], 'Age': [25, 30, 35, 40, 45, 28, 33], 'Department': ['HR', 'IT', 'HR', 'Finance', 'IT', 'Marketing', 'HR'], 'Salary': [5000, 7000, 5500, 9000, 7500, 6000, 5800] } df = pd.DataFrame(data) # 單條件拆分 - 篩選HR部門的員工 hr_employees = df[df['Department'] == 'HR'] print("HR部門員工:") print(hr_employees) # 等價寫法 hr_employees = df.query('Department == "HR"')
1.2 多條件組合拆分
# AND條件: 年齡大于30且薪資低于6000 condition = (df['Age'] > 30) & (df['Salary'] < 6000) filtered_df = df[condition] print("\n年齡>30且薪資<6000的員工:") print(filtered_df) # OR條件: HR部門或IT部門 condition = (df['Department'] == 'HR') | (df['Department'] == 'IT') dept_filtered = df[condition] print("\nHR或IT部門的員工:") print(dept_filtered) # NOT條件: 非HR部門 non_hr = df[~df['Department'].isin(['HR'])] print("\n非HR部門的員工:") print(non_hr)
1.3 使用isin()進行多值篩選
# 篩選特定部門的員工 target_departments = ['HR', 'Finance'] dept_filter = df['Department'].isin(target_departments) filtered_df = df[dept_filter] print("\nHR和Finance部門的員工:") print(filtered_df)
2. 按比例拆分數(shù)據(jù)
2.1 簡單隨機拆分
from sklearn.model_selection import train_test_split # 隨機拆分: 70%訓練集, 30%測試集 train_df, test_df = train_test_split(df, test_size=0.3, random_state=42) print(f"\n訓練集 ({len(train_df)}條):") print(train_df) print(f"\n測試集 ({len(test_df)}條):") print(test_df)
2.2 分層抽樣拆分
# 按部門分層抽樣,保持各部門比例 stratified_split = train_test_split( df, test_size=0.3, random_state=42, stratify=df['Department'] ) train_strat, test_strat = stratified_split print("\n分層抽樣后的部門分布:") print("訓練集部門分布:") print(train_strat['Department'].value_counts(normalize=True)) print("\n測試集部門分布:") print(test_strat['Department'].value_counts(normalize=True))
2.3 時間序列拆分
# 添加日期列 df['Join_Date'] = pd.to_datetime(['2020-01-15', '2019-05-20', '2021-03-10', '2018-11-05', '2022-02-28', '2020-07-15', '2019-09-01']) # 按時間點拆分 cutoff_date = pd.to_datetime('2021-01-01') historical = df[df['Join_Date'] < cutoff_date] recent = df[df['Join_Date'] >= cutoff_date] print(f"\n歷史數(shù)據(jù)(2021年前加入, {len(historical)}條):") print(historical) print(f"\n近期數(shù)據(jù)(2021年后加入, {len(recent)}條):") print(recent)
3. 按組拆分數(shù)據(jù)
3.1 使用groupby拆分
# 按部門分組 department_groups = df.groupby('Department') # 查看分組結(jié)果 print("\n按部門分組結(jié)果:") for name, group in department_groups: print(f"\n{name}部門:") print(group) # 獲取特定組 hr_group = department_groups.get_group('HR') print("\nHR部門數(shù)據(jù):") print(hr_group)
3.2 拆分為多個DataFrame
# 將每個部門的數(shù)據(jù)保存到單獨的DataFrame department_dfs = {name: group for name, group in department_groups} # 訪問特定部門的數(shù)據(jù) print("\nIT部門數(shù)據(jù):") print(department_dfs['IT']) # 或者拆分為列表 department_list = [group for _, group in department_groups]
二、數(shù)據(jù)合并詳解
1. concat方法
1.1 垂直合并(行方向)
# 創(chuàng)建兩個相似結(jié)構(gòu)的DataFrame df1 = pd.DataFrame({ 'Name': ['Alice', 'Bob'], 'Age': [25, 30], 'Department': ['HR', 'IT'] }) df2 = pd.DataFrame({ 'Name': ['Charlie', 'David'], 'Age': [35, 40], 'Department': ['Finance', 'IT'] }) # 垂直合并 combined = pd.concat([df1, df2], axis=0) print("\n垂直合并結(jié)果:") print(combined) # 重置索引 combined_reset = pd.concat([df1, df2], axis=0, ignore_index=True) print("\n重置索引后的合并結(jié)果:") print(combined_reset)
1.2 水平合并(列方向)
# 創(chuàng)建兩個不同列的DataFrame info_df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Employee_ID': [101, 102, 103, 104] }) salary_df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Salary': [5000, 7000, 5500, 9000], 'Bonus': [500, 700, 550, 900] }) # 水平合并 combined_cols = pd.concat([info_df, salary_df.drop('Name', axis=1)], axis=1) print("\n水平合并結(jié)果:") print(combined_cols)
1.3 處理不同索引
# 設(shè)置不同索引 df1_indexed = df1.set_index('Name') df2_indexed = df2.set_index('Name') # 合并時保留所有索引 combined_index = pd.concat([df1_indexed, df2_indexed], axis=0) print("\n保留所有索引的合并:") print(combined_index)
2. merge方法
2.1 基本合并操作
# 員工信息 employees = pd.DataFrame({ 'Employee_ID': [101, 102, 103, 104, 105], 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'Dept_ID': [1, 2, 1, 3, 2] }) # 部門信息 departments = pd.DataFrame({ 'Dept_ID': [1, 2, 3, 4], 'Dept_Name': ['HR', 'IT', 'Finance', 'Marketing'], 'Location': ['Floor1', 'Floor2', 'Floor3', 'Floor4'] }) # 內(nèi)連接(默認) inner_merge = pd.merge(employees, departments, on='Dept_ID') print("\n內(nèi)連接結(jié)果:") print(inner_merge) # 左連接 left_merge = pd.merge(employees, departments, on='Dept_ID', how='left') print("\n左連接結(jié)果:") print(left_merge) # 右連接 right_merge = pd.merge(employees, departments, on='Dept_ID', how='right') print("\n右連接結(jié)果:") print(right_merge) # 全外連接 outer_merge = pd.merge(employees, departments, on='Dept_ID', how='outer') print("\n全外連接結(jié)果:") print(outer_merge)
2.2 多鍵合并
# 添加位置信息 employees['Location'] = ['Floor1', 'Floor2', 'Floor1', 'Floor3', 'Floor2'] # 按部門和位置合并 multi_key_merge = pd.merge( employees, departments, left_on=['Dept_ID', 'Location'], right_on=['Dept_ID', 'Location'], how='left' ) print("\n多鍵合并結(jié)果:") print(multi_key_merge)
2.3 處理重復列名
# 兩個表都有'Name'列 departments['Manager'] = ['Alice', 'Bob', 'Charlie', 'David'] # 合并時處理重復列名 merge_with_suffix = pd.merge( employees, departments, left_on='Dept_ID', right_on='Dept_ID', suffixes=('_Employee', '_Manager') ) print("\n處理重復列名的合并:") print(merge_with_suffix)
3. join方法
3.1 基于索引的合并
# 設(shè)置索引 employees_indexed = employees.set_index('Employee_ID') salary_info = pd.DataFrame({ 'Employee_ID': [101, 102, 103, 104, 105], 'Salary': [5000, 7000, 5500, 9000, 7500], 'Bonus': [500, 700, 550, 900, 750] }).set_index('Employee_ID') # 使用join合并 joined_df = employees_indexed.join(salary_info) print("\n基于索引的join合并:") print(joined_df)
3.2 不同join類型
# 創(chuàng)建不完整的數(shù)據(jù) partial_salary = salary_info.drop(index=[104, 105]) # 內(nèi)連接 inner_join = employees_indexed.join(partial_salary, how='inner') print("\n內(nèi)連接join結(jié)果:") print(inner_join) # 左連接 left_join = employees_indexed.join(partial_salary, how='left') print("\n左連接join結(jié)果:") print(left_join)
三、高級合并技巧
1. 合并時的沖突處理
# 創(chuàng)建有沖突的數(shù)據(jù) df_conflict1 = pd.DataFrame({ 'ID': [1, 2, 3], 'Value': ['A', 'B', 'C'] }) df_conflict2 = pd.DataFrame({ 'ID': [2, 3, 4], 'Value': ['X', 'Y', 'Z'] }) # 合并時處理沖突 merged_conflict = pd.merge( df_conflict1, df_conflict2, on='ID', how='outer', suffixes=('_left', '_right') ) # 解決沖突 - 優(yōu)先使用右邊的值 merged_conflict['Value'] = merged_conflict['Value_right'].fillna(merged_conflict['Value_left']) merged_conflict = merged_conflict.drop(['Value_left', 'Value_right'], axis=1) print("\n沖突處理后的合并結(jié)果:") print(merged_conflict)
2. 合并時的復雜條件
# 創(chuàng)建需要復雜條件合并的數(shù)據(jù) orders = pd.DataFrame({ 'Order_ID': [1, 2, 3, 4, 5], 'Customer_ID': [101, 102, 101, 103, 104], 'Order_Date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']), 'Amount': [100, 200, 150, 300, 250] }) customers = pd.DataFrame({ 'Customer_ID': [101, 102, 103, 105], 'Join_Date': pd.to_datetime(['2022-01-01', '2022-05-15', '2022-11-20', '2023-01-01']), 'Tier': ['Gold', 'Silver', 'Silver', 'Bronze'] }) # 合并后篩選: 只保留下單日期晚于加入日期的記錄 merged_complex = pd.merge( orders, customers, on='Customer_ID', how='left' ) merged_complex = merged_complex[merged_complex['Order_Date'] >= merged_complex['Join_Date']] print("\n復雜條件合并結(jié)果:") print(merged_complex)
3. 大型數(shù)據(jù)集的合并優(yōu)化
import numpy as np # 創(chuàng)建大型數(shù)據(jù)集 large_df1 = pd.DataFrame({ 'ID': range(1, 100001), 'Value1': np.random.rand(100000) }) large_df2 = pd.DataFrame({ 'ID': range(50000, 150001), 'Value2': np.random.rand(100000) }) # 優(yōu)化合并方法1: 指定合并鍵的數(shù)據(jù)類型 large_df1['ID'] = large_df1['ID'].astype('int32') large_df2['ID'] = large_df2['ID'].astype('int32') # 優(yōu)化合并方法2: 使用更高效的合并方式 %timeit pd.merge(large_df1, large_df2, on='ID') # 測量執(zhí)行時間 # 優(yōu)化合并方法3: 先篩選再合并 filtered_df2 = large_df2[large_df2['ID'] <= 100000] %timeit pd.merge(large_df1, filtered_df2, on='ID')
四、實際應用案例
1. 電商數(shù)據(jù)分析
# 創(chuàng)建電商數(shù)據(jù)集 orders = pd.DataFrame({ 'order_id': [1001, 1002, 1003, 1004, 1005], 'customer_id': [201, 202, 203, 204, 205], 'order_date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03', '2023-01-04']), 'amount': [150.0, 200.0, 75.5, 300.0, 125.0] }) customers = pd.DataFrame({ 'customer_id': [201, 202, 203, 204, 206], 'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'join_date': pd.to_datetime(['2022-01-15', '2022-03-20', '2022-05-10', '2022-07-05', '2022-09-01']), 'tier': ['Gold', 'Silver', 'Silver', 'Bronze', 'Gold'] }) products = pd.DataFrame({ 'order_id': [1001, 1001, 1002, 1003, 1004, 1004, 1005], 'product_id': [1, 2, 1, 3, 2, 3, 1], 'quantity': [1, 2, 1, 1, 3, 1, 2], 'price': [50.0, 50.0, 200.0, 75.5, 100.0, 100.0, 62.5] }) # 合并訂單和客戶信息 order_customer = pd.merge(orders, customers, on='customer_id', how='left') # 合并訂單詳情 full_data = pd.merge(order_customer, products, on='order_id', how='left') # 計算擴展金額 full_data['extended_price'] = full_data['quantity'] * full_data['price'] # 按客戶分析 customer_analysis = full_data.groupby(['customer_id', 'name', 'tier']).agg( total_orders=('order_id', 'nunique'), total_amount=('amount', 'sum'), total_items=('quantity', 'sum') ).reset_index() print("\n完整的電商合并數(shù)據(jù):") print(full_data) print("\n客戶分析:") print(customer_analysis)
2. 學生成績分析
# 創(chuàng)建學生數(shù)據(jù)集 students = pd.DataFrame({ 'student_id': [1, 2, 3, 4, 5], 'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'class': ['A', 'B', 'A', 'B', 'A'] }) grades_math = pd.DataFrame({ 'student_id': [1, 2, 3, 4, 6], 'math_score': [90, 85, 78, 92, 88], 'math_rank': [1, 2, 3, 1, 2] }) grades_english = pd.DataFrame({ 'student_id': [1, 3, 4, 5, 7], 'english_score': [88, 76, 95, 82, 90], 'english_rank': [2, 3, 1, 4, 1] }) # 合并所有成績 all_grades = pd.merge( pd.merge(students, grades_math, on='student_id', how='left'), grades_english, on='student_id', how='left' ) # 計算平均分和排名 all_grades['average_score'] = all_grades[['math_score', 'english_score']].mean(axis=1) all_grades['average_rank'] = all_grades[['math_rank', 'english_rank']].mean(axis=1) # 按班級分析 class_analysis = all_grades.groupby('class').agg( avg_math=('math_score', 'mean'), avg_english=('english_score', 'mean'), top_math=('math_score', 'max'), top_english=('english_score', 'max') ).reset_index() print("\n完整的學生成績數(shù)據(jù):") print(all_grades) print("\n班級分析:") print(class_analysis)
五、最佳實踐和常見問題
1. 合并前的準備工作
# 1. 檢查鍵的唯一性 print("\n客戶ID在customers表中的唯一性:", customers['customer_id'].is_unique) print("訂單ID在orders表中的唯一性:", orders['order_id'].is_unique) # 2. 檢查缺失值 print("\ncustomers表中customer_id的缺失值:", customers['customer_id'].isnull().sum()) print("orders表中customer_id的缺失值:", orders['customer_id'].isnull().sum()) # 3. 檢查數(shù)據(jù)類型 print("\ncustomers表中customer_id的類型:", customers['customer_id'].dtype) print("orders表中customer_id的類型:", orders['customer_id'].dtype) # 4. 預處理 - 填充缺失值或轉(zhuǎn)換類型 orders['customer_id'] = orders['customer_id'].fillna(0).astype(int) customers['customer_id'] = customers['customer_id'].astype(int)
2. 合并后的驗證
# 合并數(shù)據(jù) merged_data = pd.merge(orders, customers, on='customer_id', how='left') # 1. 檢查合并后的行數(shù) print("\n合并后的行數(shù):", len(merged_data)) print("左表行數(shù):", len(orders)) print("右表行數(shù):", len(customers)) # 2. 檢查匹配情況 print("\n成功匹配的記錄數(shù):", len(merged_data[~merged_data['name'].isnull()])) print("未匹配的記錄數(shù):", len(merged_data[merged_data['name'].isnull()])) # 3. 檢查重復列 print("\n合并后的列名:", merged_data.columns.tolist()) # 4. 抽樣檢查 print("\n合并數(shù)據(jù)抽樣檢查:") print(merged_data.sample(3, random_state=42))
3. 性能優(yōu)化技巧
# 1. 指定合并鍵的數(shù)據(jù)類型 orders['customer_id'] = orders['customer_id'].astype('int32') customers['customer_id'] = customers['customer_id'].astype('int32') # 2. 減少合并前的數(shù)據(jù)量 # 只選擇需要的列 customers_filtered = customers[['customer_id', 'name', 'tier']] # 3. 使用更高效的合并方法 # 對于大型數(shù)據(jù)集,可以考慮使用Dask或PySpark # 4. 分塊合并 def chunk_merge(left, right, on, chunksize=10000, how='left'): chunks = [] for i in range(0, len(left), chunksize): chunk = pd.merge( left.iloc[i:i+chunksize], right, on=on, how=how ) chunks.append(chunk) return pd.concat(chunks, axis=0) # 5. 使用索引加速 orders_indexed = orders.set_index('customer_id') customers_indexed = customers.set_index('customer_id') %timeit orders_indexed.join(customers_indexed, how='left')
4. 常見問題及解決方案
問題1: 合并后行數(shù)異常增多
- 原因: 合并鍵在其中一個表中不唯一
- 解決: 檢查鍵的唯一性
df.duplicated().sum()
問題2: 合并后出現(xiàn)大量NaN值
- 原因: 鍵不匹配或使用了外連接
- 解決: 檢查鍵的匹配情況或使用內(nèi)連接
問題3: 合并速度非常慢
- 原因: 數(shù)據(jù)集太大或鍵的數(shù)據(jù)類型不一致
- 解決: 優(yōu)化數(shù)據(jù)類型,分塊處理,或使用更高效的工具
問題4: 列名沖突
- 原因: 兩個表有相同列名但非合并鍵
- 解決: 使用suffixes參數(shù)或提前重命名列
問題5: 內(nèi)存不足
- 原因: 數(shù)據(jù)集太大
- 解決: 使用分塊處理,或者考慮使用Dask等工具
以上就是Python進行數(shù)據(jù)拆分和合并的超詳細指南的詳細內(nèi)容,更多關(guān)于Python數(shù)據(jù)拆分和合并的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python用selenium實現(xiàn)自動登錄和下單的項目實戰(zhàn)
本文主要介紹了Python用selenium實現(xiàn)自動登錄和下單的項目實戰(zhàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2023-02-02python 在右鍵菜單中加入復制目標文件的有效存放路徑(單斜杠或者雙反斜杠)
這篇文章主要介紹了python 在右鍵菜單中加入復制目標文件的有效存放路徑(單斜杠或者雙反斜杠),本文給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-04-04pandas實現(xiàn)DataFrame顯示最大行列,不省略顯示實例
今天小編就為大家分享一篇pandas實現(xiàn)DataFrame顯示最大行列,不省略顯示實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-12-12Python中關(guān)于面向?qū)ο蟾拍畹脑敿氈v解
要了解面向?qū)ο笪覀兛隙ㄐ枰戎缹ο蟮降资鞘裁赐嬉鈨?。關(guān)于對象的理解很簡單,在我們的身邊,每一種事物的存在都是一種對象??偨Y(jié)為一句話也就是:對象就是事物存在的實體2021-10-10