TF-IDF理解及其Java實現(xiàn)代碼實例
TF-IDF
前言
前段時間,又具體看了自己以前整理的TF-IDF,這里把它發(fā)布在博客上,知識就是需要不斷的重復的,否則就感覺生疏了。
TF-IDF理解
TF-IDF(term frequency–inverse document frequency)是一種用于資訊檢索與資訊探勘的常用加權技術, TFIDF的主要思想是:如果某個詞或短語在一篇文章中出現(xiàn)的頻率TF高,并且在其他文章中很少出現(xiàn),則認為此詞或者短語具有很好的類別區(qū)分能力,適合用來分類。TFIDF實際上是:TF * IDF,TF詞頻(Term Frequency),IDF反文檔頻率(Inverse Document Frequency)。TF表示詞條在文檔d中出現(xiàn)的頻率。IDF的主要思想是:如果包含詞條t的文檔越少,也就是n越小,IDF越大,則說明詞條t具有很好的類別區(qū)分能力。如果某一類文檔C中包含詞條t的文檔數為m,而其它類包含t的文檔總數為k,顯然所有包含t的文檔數n=m + k,當m大的時候,n也大,按照IDF公式得到的IDF的值會小,就說明該詞條t類別區(qū)分能力不強。但是實際上,如果一個詞條在一個類的文檔中頻繁出現(xiàn),則說明該詞條能夠很好代表這個類的文本的特征,這樣的詞條應該給它們賦予較高的權重,并選來作為該類文本的特征詞以區(qū)別與其它類文檔。這就是IDF的不足之處.
TF公式:
以上式子中是該詞在文件
中的出現(xiàn)次數,而分母則是在文件
中所有字詞的出現(xiàn)次數之和。
IDF公式:
|D|:語料庫中的文件總數
:包含詞語 ti 的文件數目(即 ni,j不等于0的文件數目)如果該詞語不在語料庫中,就會導致被除數為零,因此一般情況下使用
然后
TF-IDF實現(xiàn)(Java)
這里采用了外部插件IKAnalyzer-2012.jar,用其進行分詞
具體代碼如下:
package tfidf; import java.io.*; import java.util.*; import org.wltea.analyzer.lucene.IKAnalyzer; public class ReadFiles { /** * @param args */ private static ArrayList<String> FileList = new ArrayList<String>(); // the list of file //get list of file for the directory, including sub-directory of it public static List<String> readDirs(String filepath) throws FileNotFoundException, IOException { try { File file = new File(filepath); if(!file.isDirectory()) { System.out.println("輸入的[]"); System.out.println("filepath:" + file.getAbsolutePath()); } else { String[] flist = file.list(); for (int i = 0; i < flist.length; i++) { File newfile = new File(filepath + "\\" + flist[i]); if(!newfile.isDirectory()) { FileList.add(newfile.getAbsolutePath()); } else if(newfile.isDirectory()) //if file is a directory, call ReadDirs { readDirs(filepath + "\\" + flist[i]); } } } } catch(FileNotFoundException e) { System.out.println(e.getMessage()); } return FileList; } //read file public static String readFile(String file) throws FileNotFoundException, IOException { StringBuffer strSb = new StringBuffer(); //String is constant, StringBuffer can be changed. InputStreamReader inStrR = new InputStreamReader(new FileInputStream(file), "gbk"); //byte streams to character streams BufferedReader br = new BufferedReader(inStrR); String line = br.readLine(); while(line != null){ strSb.append(line).append("\r\n"); line = br.readLine(); } return strSb.toString(); } //word segmentation public static ArrayList<String> cutWords(String file) throws IOException{ ArrayList<String> words = new ArrayList<String>(); String text = ReadFiles.readFile(file); IKAnalyzer analyzer = new IKAnalyzer(); words = analyzer.split(text); return words; } //term frequency in a file, times for each word public static HashMap<String, Integer> normalTF(ArrayList<String> cutwords){ HashMap<String, Integer> resTF = new HashMap<String, Integer>(); for (String word : cutwords){ if(resTF.get(word) == null){ resTF.put(word, 1); System.out.println(word); } else{ resTF.put(word, resTF.get(word) + 1); System.out.println(word.toString()); } } return resTF; } //term frequency in a file, frequency of each word public static HashMap<String, float> tf(ArrayList<String> cutwords){ HashMap<String, float> resTF = new HashMap<String, float>(); int wordLen = cutwords.size(); HashMap<String, Integer> intTF = ReadFiles.normalTF(cutwords); Iterator iter = intTF.entrySet().iterator(); //iterator for that get from TF while(iter.hasNext()){ Map.Entry entry = (Map.Entry)iter.next(); resTF.put(entry.getKey().toString(), float.parsefloat(entry.getValue().toString()) / wordLen); System.out.println(entry.getKey().toString() + " = "+ float.parsefloat(entry.getValue().toString()) / wordLen); } return resTF; } //tf times for file public static HashMap<String, HashMap<String, Integer>> normalTFAllFiles(String dirc) throws IOException{ HashMap<String, HashMap<String, Integer>> allNormalTF = new HashMap<String, HashMap<String,Integer>>(); List<String> filelist = ReadFiles.readDirs(dirc); for (String file : filelist){ HashMap<String, Integer> dict = new HashMap<String, Integer>(); ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut word for one file dict = ReadFiles.normalTF(cutwords); allNormalTF.put(file, dict); } return allNormalTF; } //tf for all file public static HashMap<String,HashMap<String, float>> tfAllFiles(String dirc) throws IOException{ HashMap<String, HashMap<String, float>> allTF = new HashMap<String, HashMap<String, float>>(); List<String> filelist = ReadFiles.readDirs(dirc); for (String file : filelist){ HashMap<String, float> dict = new HashMap<String, float>(); ArrayList<String> cutwords = ReadFiles.cutWords(file); //get cut words for one file dict = ReadFiles.tf(cutwords); allTF.put(file, dict); } return allTF; } public static HashMap<String, float> idf(HashMap<String,HashMap<String, float>> all_tf){ HashMap<String, float> resIdf = new HashMap<String, float>(); HashMap<String, Integer> dict = new HashMap<String, Integer>(); int docNum = FileList.size(); for (int i = 0; i < docNum; i++){ HashMap<String, float> temp = all_tf.get(FileList.get(i)); Iterator iter = temp.entrySet().iterator(); while(iter.hasNext()){ Map.Entry entry = (Map.Entry)iter.next(); String word = entry.getKey().toString(); if(dict.get(word) == null){ dict.put(word, 1); } else { dict.put(word, dict.get(word) + 1); } } } System.out.println("IDF for every word is:"); Iterator iter_dict = dict.entrySet().iterator(); while(iter_dict.hasNext()){ Map.Entry entry = (Map.Entry)iter_dict.next(); float value = (float)Math.log(docNum / float.parsefloat(entry.getValue().toString())); resIdf.put(entry.getKey().toString(), value); System.out.println(entry.getKey().toString() + " = " + value); } return resIdf; } public static void tf_idf(HashMap<String,HashMap<String, float>> all_tf,HashMap<String, float> idfs){ HashMap<String, HashMap<String, float>> resTfIdf = new HashMap<String, HashMap<String, float>>(); int docNum = FileList.size(); for (int i = 0; i < docNum; i++){ String filepath = FileList.get(i); HashMap<String, float> tfidf = new HashMap<String, float>(); HashMap<String, float> temp = all_tf.get(filepath); Iterator iter = temp.entrySet().iterator(); while(iter.hasNext()){ Map.Entry entry = (Map.Entry)iter.next(); String word = entry.getKey().toString(); float value = (float)float.parsefloat(entry.getValue().toString()) * idfs.get(word); tfidf.put(word, value); } resTfIdf.put(filepath, tfidf); } System.out.println("TF-IDF for Every file is :"); DisTfIdf(resTfIdf); } public static void DisTfIdf(HashMap<String, HashMap<String, float>> tfidf){ Iterator iter1 = tfidf.entrySet().iterator(); while(iter1.hasNext()){ Map.Entry entrys = (Map.Entry)iter1.next(); System.out.println("FileName: " + entrys.getKey().toString()); System.out.print("{"); HashMap<String, float> temp = (HashMap<String, float>) entrys.getValue(); Iterator iter2 = temp.entrySet().iterator(); while(iter2.hasNext()){ Map.Entry entry = (Map.Entry)iter2.next(); System.out.print(entry.getKey().toString() + " = " + entry.getValue().toString() + ", "); } System.out.println("}"); } } public static void main(String[] args) throws IOException { // TODO Auto-generated method stub String file = "D:/testfiles"; HashMap<String,HashMap<String, float>> all_tf = tfAllFiles(file); System.out.println(); HashMap<String, float> idfs = idf(all_tf); System.out.println(); tf_idf(all_tf, idfs); } }
結果如下圖:
常見問題
沒有加入lucene jar包
lucene包和je包版本不適合
總結
以上就是本文關于TF-IDF理解及其Java實現(xiàn)代碼實例的全部內容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站:
如有不足之處,歡迎留言指出。
相關文章
基于Spring-cloud-gateway實現(xiàn)全局日志記錄的方法
最近項目在線上運行出現(xiàn)了一些難以復現(xiàn)的bug需要定位相應api的日志,通過nginx提供的api請求日志難以實現(xiàn),于是在gateway通過全局過濾器記錄api請求日志,本文給大家介紹基于Spring-cloud-gateway實現(xiàn)全局日志記錄,感興趣的朋友一起看看吧2023-11-11SpringBoot整合任務系統(tǒng)quartz和SpringTask的方法
這篇文章主要介紹了SpringBoot整合任務系統(tǒng)(quartz和SpringTask),Quartz是一個比較成熟了的定時任務框架,但是捏,它稍微的有些許繁瑣,本文先給大家講解下Quartz的一些基本概念結合實例代碼給大家詳細講解,需要的朋友可以參考下2022-10-10