Python編程實現(xiàn)線性回歸和批量梯度下降法代碼實例
通過學習斯坦福公開課的線性規(guī)劃和梯度下降,參考他人代碼自己做了測試,寫了個類以后有時間再去擴展,代碼注釋以后再加,作業(yè)好多:
import numpy as np import matplotlib.pyplot as plt import random class dataMinning: datasets = [] labelsets = [] addressD = '' #Data folder addressL = '' #Label folder npDatasets = np.zeros(1) npLabelsets = np.zeros(1) cost = [] numIterations = 0 alpha = 0 theta = np.ones(2) #pCols = 0 #dRows = 0 def __init__(self,addressD,addressL,theta,numIterations,alpha,datasets=None): if datasets is None: self.datasets = [] else: self.datasets = datasets self.addressD = addressD self.addressL = addressL self.theta = theta self.numIterations = numIterations self.alpha = alpha def readFrom(self): fd = open(self.addressD,'r') for line in fd: tmp = line[:-1].split() self.datasets.append([int(i) for i in tmp]) fd.close() self.npDatasets = np.array(self.datasets) fl = open(self.addressL,'r') for line in fl: tmp = line[:-1].split() self.labelsets.append([int(i) for i in tmp]) fl.close() tm = [] for item in self.labelsets: tm = tm + item self.npLabelsets = np.array(tm) def genData(self,numPoints,bias,variance): self.genx = np.zeros(shape = (numPoints,2)) self.geny = np.zeros(shape = numPoints) for i in range(0,numPoints): self.genx[i][0] = 1 self.genx[i][1] = i self.geny[i] = (i + bias) + random.uniform(0,1) * variance def gradientDescent(self): xTrans = self.genx.transpose() # i = 0 while i < self.numIterations: hypothesis = np.dot(self.genx,self.theta) loss = hypothesis - self.geny #record the cost self.cost.append(np.sum(loss ** 2)) #calculate the gradient gradient = np.dot(xTrans,loss) #updata, gradientDescent self.theta = self.theta - self.alpha * gradient i = i + 1 def show(self): print 'yes' if __name__ == "__main__": c = dataMinning('c:\\city.txt','c:\\st.txt',np.ones(2),100000,0.000005) c.genData(100,25,10) c.gradientDescent() cx = range(len(c.cost)) plt.figure(1) plt.plot(cx,c.cost) plt.ylim(0,25000) plt.figure(2) plt.plot(c.genx[:,1],c.geny,'b.') x = np.arange(0,100,0.1) y = x * c.theta[1] + c.theta[0] plt.plot(x,y) plt.margins(0.2) plt.show()
圖1. 迭代過程中的誤差cost
圖2. 數(shù)據(jù)散點圖和解直線
總結
以上就是本文關于Python編程實現(xiàn)線性回歸和批量梯度下降法代碼實例的全部內容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站:
Python算法輸出1-9數(shù)組形成的結果為100的所有運算式
如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!
相關文章
Python使用QQ郵箱發(fā)送郵件報錯smtplib.SMTPAuthenticationError
這篇文章主要介紹了Python使用QQ郵箱發(fā)送郵件報錯smtplib.SMTPAuthenticationError,簡單介紹了python 發(fā)送郵件的步驟,需要的朋友可以參考下2019-12-12對Python中TKinter模塊中的Label組件實例詳解
今天小編就為大家分享一篇對Python中TKinter模塊中的Label組件實例詳解,具有很好的價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-06-06Pandas中KeyError: 'Column_Name' not
在使用Pandas進行數(shù)據(jù)處理時,KeyError: 'Column_Name' not in index是一種常見的錯誤,它通常發(fā)生在嘗試訪問DataFrame中不存在的列名時,本文將深入分析這一錯誤的原因、提供解決辦法,需要的朋友可以參考下2024-07-07Python移動測試開發(fā)subprocess模塊項目實戰(zhàn)
這篇文章主要為大家介紹了Python移動測試開發(fā)subprocess模塊項目實戰(zhàn)示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-07-07