欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

PyTorch CNN實(shí)戰(zhàn)之MNIST手寫數(shù)字識(shí)別示例

 更新時(shí)間:2018年05月29日 10:54:18   作者:yuquanle  
本篇文章主要介紹了PyTorch CNN實(shí)戰(zhàn)之MNIST手寫數(shù)字識(shí)別示例,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧

簡(jiǎn)介

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)技術(shù)中極具代表的網(wǎng)絡(luò)結(jié)構(gòu)之一,在圖像處理領(lǐng)域取得了很大的成功,在國(guó)際標(biāo)準(zhǔn)的ImageNet數(shù)據(jù)集上,許多成功的模型都是基于CNN的。

卷積神經(jīng)網(wǎng)絡(luò)CNN的結(jié)構(gòu)一般包含這幾個(gè)層:

  1. 輸入層:用于數(shù)據(jù)的輸入
  2. 卷積層:使用卷積核進(jìn)行特征提取和特征映射
  3. 激勵(lì)層:由于卷積也是一種線性運(yùn)算,因此需要增加非線性映射
  4. 池化層:進(jìn)行下采樣,對(duì)特征圖稀疏處理,減少數(shù)據(jù)運(yùn)算量。
  5. 全連接層:通常在CNN的尾部進(jìn)行重新擬合,減少特征信息的損失
  6. 輸出層:用于輸出結(jié)果

PyTorch實(shí)戰(zhàn)

本文選用上篇的數(shù)據(jù)集MNIST手寫數(shù)字識(shí)別實(shí)踐CNN。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# Training settings
batch_size = 64

# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
                train=True,
                transform=transforms.ToTensor(),
                download=True)

test_dataset = datasets.MNIST(root='./data/',
               train=False,
               transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=batch_size,
                      shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=batch_size,
                     shuffle=False)


class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    # 輸入1通道,輸出10通道,kernel 5*5
    self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
    self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
    self.mp = nn.MaxPool2d(2)
    # fully connect
    self.fc = nn.Linear(320, 10)

  def forward(self, x):
    # in_size = 64
    in_size = x.size(0) # one batch
    # x: 64*10*12*12
    x = F.relu(self.mp(self.conv1(x)))
    # x: 64*20*4*4
    x = F.relu(self.mp(self.conv2(x)))
    # x: 64*320
    x = x.view(in_size, -1) # flatten the tensor
    # x: 64*10
    x = self.fc(x)
    return F.log_softmax(x)


model = Net()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

def train(epoch):
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = Variable(data), Variable(target)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 200 == 0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.data[0]))


def test():
  test_loss = 0
  correct = 0
  for data, target in test_loader:
    data, target = Variable(data, volatile=True), Variable(target)
    output = model(data)
    # sum up batch loss
    test_loss += F.nll_loss(output, target, size_average=False).data[0]
    # get the index of the max log-probability
    pred = output.data.max(1, keepdim=True)[1]
    correct += pred.eq(target.data.view_as(pred)).cpu().sum()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))


for epoch in range(1, 10):
  train(epoch)
  test()

輸出結(jié)果:

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.315724
Train Epoch: 1 [12800/60000 (21%)]  Loss: 1.931551
Train Epoch: 1 [25600/60000 (43%)]  Loss: 0.733935
Train Epoch: 1 [38400/60000 (64%)]  Loss: 0.165043
Train Epoch: 1 [51200/60000 (85%)]  Loss: 0.235188

Test set: Average loss: 0.1935, Accuracy: 9421/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.333513
Train Epoch: 2 [12800/60000 (21%)]  Loss: 0.163156
Train Epoch: 2 [25600/60000 (43%)]  Loss: 0.213840
Train Epoch: 2 [38400/60000 (64%)]  Loss: 0.141114
Train Epoch: 2 [51200/60000 (85%)]  Loss: 0.128191

Test set: Average loss: 0.1180, Accuracy: 9645/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.206469
Train Epoch: 3 [12800/60000 (21%)]  Loss: 0.234443
Train Epoch: 3 [25600/60000 (43%)]  Loss: 0.061048
Train Epoch: 3 [38400/60000 (64%)]  Loss: 0.192217
Train Epoch: 3 [51200/60000 (85%)]  Loss: 0.089190

Test set: Average loss: 0.0938, Accuracy: 9723/10000 (97%)

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.086325
Train Epoch: 4 [12800/60000 (21%)]  Loss: 0.117741
Train Epoch: 4 [25600/60000 (43%)]  Loss: 0.188178
Train Epoch: 4 [38400/60000 (64%)]  Loss: 0.049807
Train Epoch: 4 [51200/60000 (85%)]  Loss: 0.174097

Test set: Average loss: 0.0743, Accuracy: 9767/10000 (98%)

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.063171
Train Epoch: 5 [12800/60000 (21%)]  Loss: 0.061265
Train Epoch: 5 [25600/60000 (43%)]  Loss: 0.103549
Train Epoch: 5 [38400/60000 (64%)]  Loss: 0.019137
Train Epoch: 5 [51200/60000 (85%)]  Loss: 0.067103

Test set: Average loss: 0.0720, Accuracy: 9781/10000 (98%)

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.069251
Train Epoch: 6 [12800/60000 (21%)]  Loss: 0.075502
Train Epoch: 6 [25600/60000 (43%)]  Loss: 0.052337
Train Epoch: 6 [38400/60000 (64%)]  Loss: 0.015375
Train Epoch: 6 [51200/60000 (85%)]  Loss: 0.028996

Test set: Average loss: 0.0694, Accuracy: 9783/10000 (98%)

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.171613
Train Epoch: 7 [12800/60000 (21%)]  Loss: 0.078520
Train Epoch: 7 [25600/60000 (43%)]  Loss: 0.149186
Train Epoch: 7 [38400/60000 (64%)]  Loss: 0.026692
Train Epoch: 7 [51200/60000 (85%)]  Loss: 0.108824

Test set: Average loss: 0.0672, Accuracy: 9793/10000 (98%)

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.029188
Train Epoch: 8 [12800/60000 (21%)]  Loss: 0.031202
Train Epoch: 8 [25600/60000 (43%)]  Loss: 0.194858
Train Epoch: 8 [38400/60000 (64%)]  Loss: 0.051497
Train Epoch: 8 [51200/60000 (85%)]  Loss: 0.024832

Test set: Average loss: 0.0535, Accuracy: 9837/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.026706
Train Epoch: 9 [12800/60000 (21%)]  Loss: 0.057807
Train Epoch: 9 [25600/60000 (43%)]  Loss: 0.065225
Train Epoch: 9 [38400/60000 (64%)]  Loss: 0.037004
Train Epoch: 9 [51200/60000 (85%)]  Loss: 0.057822

Test set: Average loss: 0.0538, Accuracy: 9829/10000 (98%)

Process finished with exit code 0

參考:https://github.com/hunkim/PyTorchZeroToAll

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • python之django路由和視圖案例教程

    python之django路由和視圖案例教程

    這篇文章主要介紹了python之django路由和視圖案例教程,本篇文章通過簡(jiǎn)要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下
    2021-07-07
  • python保留兩位小數(shù)的五種方法

    python保留兩位小數(shù)的五種方法

    很多小伙伴在學(xué)習(xí)python的時(shí)候可能會(huì)遇到對(duì)數(shù)據(jù)進(jìn)行格式化輸出的需求,其中最常見的需求為:保留幾位小數(shù),今天小編就以python怎么保留兩位小數(shù)為例,來介紹一下python數(shù)據(jù)格式化的方法,需要的朋友可以參考下
    2024-08-08
  • 淺談python迭代器

    淺談python迭代器

    這篇文章主要介紹了淺談python迭代器,具有一定參考價(jià)值,需要的朋友可以了解下。
    2017-11-11
  • 如何用Python Beautiful?Soup解析HTML內(nèi)容

    如何用Python Beautiful?Soup解析HTML內(nèi)容

    Beautiful Soup是一種Python的解析庫(kù),主要用于解析和處理HTML/XML內(nèi)容,詳細(xì)介紹Beautiful Soup的使用方式和應(yīng)用場(chǎng)景,本文給大家介紹的非常詳細(xì),需要的朋友可以參考下
    2023-05-05
  • 淺談python的輸入輸出,注釋,基本數(shù)據(jù)類型

    淺談python的輸入輸出,注釋,基本數(shù)據(jù)類型

    這篇文章主要介紹了python的輸入輸出,注釋,基本數(shù)據(jù)類型,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-04-04
  • Django數(shù)據(jù)庫(kù)表反向生成實(shí)例解析

    Django數(shù)據(jù)庫(kù)表反向生成實(shí)例解析

    這篇文章主要介紹了Django數(shù)據(jù)庫(kù)表反向生成實(shí)例解析,分享了相關(guān)代碼示例,小編覺得還是挺不錯(cuò)的,具有一定借鑒價(jià)值,需要的朋友可以參考下
    2018-02-02
  • Python中使用matplotlib繪制各類圖表示例詳解

    Python中使用matplotlib繪制各類圖表示例詳解

    這篇文章主要給大家介紹了關(guān)于Python中使用matplotlib繪制各類圖表的相關(guān)資料,matplotlib是python的一個(gè)庫(kù),內(nèi)部?jī)?chǔ)存了大量的函數(shù)用于繪制圖像,通常會(huì)與pandas和numpy庫(kù)一起使用,平常我們通常只是用里面的pyplot模塊,需要的朋友可以參考下
    2023-10-10
  • 基于文件路徑中/?\?//?\\的用法以及絕對(duì)相對(duì)路徑的問題

    基于文件路徑中/?\?//?\\的用法以及絕對(duì)相對(duì)路徑的問題

    這篇文章主要介紹了基于文件路徑中/?\?//?\\的用法以及絕對(duì)相對(duì)路徑的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-02-02
  • 使用python將csv數(shù)據(jù)導(dǎo)入mysql數(shù)據(jù)庫(kù)

    使用python將csv數(shù)據(jù)導(dǎo)入mysql數(shù)據(jù)庫(kù)

    這篇文章主要為大家詳細(xì)介紹了如何使用python將csv數(shù)據(jù)導(dǎo)入mysql數(shù)據(jù)庫(kù),文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下
    2024-05-05
  • python如何解決指定代碼段超時(shí)程序卡死

    python如何解決指定代碼段超時(shí)程序卡死

    這篇文章主要介紹了python如何解決指定代碼段超時(shí)程序卡死,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2022-11-11

最新評(píng)論