Pandas之Fillna填充缺失數(shù)據(jù)的方法
約定:
import pandas as pd import numpy as np from numpy import nan as NaN
填充缺失數(shù)據(jù)
fillna()是最主要的處理方式了。
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]) df1
代碼結(jié)果:
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 2.0 | 3.0 |
1 | NaN | NaN | 2.0 |
2 | NaN | NaN | NaN |
3 | 8.0 | 8.0 | NaN |
用常數(shù)填充:
df1.fillna(100)
代碼結(jié)果:
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 2.0 | 3.0 |
1 | 100.0 | 100.0 | 2.0 |
2 | 100.0 | 100.0 | 100.0 |
3 | 8.0 | 8.0 | 100.0 |
通過字典填充不同的常數(shù):
df1.fillna({0:10,1:20,2:30})
代碼結(jié)果:
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 2.0 | 3.0 |
1 | 10.0 | 20.0 | 2.0 |
2 | 10.0 | 20.0 | 30.0 |
3 | 8.0 | 8.0 | 30.0 |
傳入inplace=True直接修改原對象:
df1.fillna(0,inplace=True) df1
代碼結(jié)果:
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 2.0 | 3.0 |
1 | 0.0 | 0.0 | 2.0 |
2 | 0.0 | 0.0 | 0.0 |
3 | 8.0 | 8.0 | 0.0 |
傳入method=” “改變插值方式:
df2=pd.DataFrame(np.random.randint(0,10,(5,5))) df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN df2
代碼結(jié)果:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 6 | 6 | 2 | 4.0 | 1.0 |
1 | 4 | 7 | 0 | NaN | 5.0 |
2 | 6 | 5 | 5 | NaN | NaN |
3 | 1 | 9 | 9 | NaN | NaN |
4 | 4 | 8 | 1 | 5.0 | 9.0 |
df2.fillna(method='ffill')#用前面的值來填充
代碼結(jié)果:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 6 | 6 | 2 | 4.0 | 1.0 |
1 | 4 | 7 | 0 | 4.0 | 5.0 |
2 | 6 | 5 | 5 | 4.0 | 5.0 |
3 | 1 | 9 | 9 | 4.0 | 5.0 |
4 | 4 | 8 | 1 | 5.0 | 9.0 |
傳入limit=” “限制填充個(gè)數(shù):
df2.fillna(method='bfill',limit=2)
代碼結(jié)果:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 6 | 6 | 2 | 4.0 | 1.0 |
1 | 4 | 7 | 0 | NaN | 5.0 |
2 | 6 | 5 | 5 | 5.0 | 9.0 |
3 | 1 | 9 | 9 | 5.0 | 9.0 |
4 | 4 | 8 | 1 | 5.0 | 9.0 |
傳入axis=” “修改填充方向:
df2.fillna(method="ffill",limit=1,axis=1)
代碼結(jié)果:
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 6.0 | 6.0 | 2.0 | 4.0 | 1.0 |
1 | 4.0 | 7.0 | 0.0 | 0.0 | 5.0 |
2 | 6.0 | 5.0 | 5.0 | 5.0 | NaN |
3 | 1.0 | 9.0 | 9.0 | 9.0 | NaN |
4 | 4.0 | 8.0 | 1.0 | 5.0 | 9.0 |
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python統(tǒng)計(jì)列表中每個(gè)元素出現(xiàn)次數(shù)的4種實(shí)現(xiàn)
本文主要介紹了Python統(tǒng)計(jì)列表中每個(gè)元素出現(xiàn)次數(shù)的4種實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-07-07Django中的DateTimeField和DateField實(shí)現(xiàn)
這篇文章主要介紹了Django中的DateTimeField和DateField實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-02-02python 進(jìn)程的幾種創(chuàng)建方式詳解
這篇文章主要介紹了python 進(jìn)程的幾種創(chuàng)建方式詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-08-08一篇文章搞懂Python程序流程控制結(jié)構(gòu)
這篇文章主要給大家介紹了關(guān)于Python程序流程控制結(jié)構(gòu)的相關(guān)資料,本節(jié)學(xué)習(xí)了Python程序的控制結(jié)構(gòu)之順序結(jié)構(gòu)、分支結(jié)構(gòu)、循環(huán)結(jié)構(gòu),文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下2022-09-09python實(shí)現(xiàn)m3u8格式轉(zhuǎn)換為mp4視頻格式
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)m3u8格式轉(zhuǎn)換為mp4視頻格式,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-02-02Python采集王者最低戰(zhàn)力信息實(shí)戰(zhàn)示例
這篇文章主要為大家介紹了Python采集王者最低戰(zhàn)力信息實(shí)戰(zhàn)示例解析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-04-04python中not not x 與bool(x) 的區(qū)別
這篇文章主要介紹了python中not not x 與 bool(x) 的區(qū)別,我們就來做一個(gè)選擇,就是 not not x 和 bool(x) 用哪個(gè)比較好?下面一起進(jìn)入文章看看吧2021-12-12