Pytorch實現(xiàn)的手寫數字mnist識別功能完整示例
更新時間:2019年12月13日 10:47:02 作者:nudt_qxx
這篇文章主要介紹了Pytorch實現(xiàn)的手寫數字mnist識別功能,結合完整實例形式分析了Pytorch模塊手寫字識別具體步驟與相關實現(xiàn)技巧,需要的朋友可以參考下
本文實例講述了Pytorch實現(xiàn)的手寫數字mnist識別功能。分享給大家供大家參考,具體如下:
import torch
import torchvision as tv
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import argparse
# 定義是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定義網絡結構
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential( #input_size=(1*28*28)
nn.Conv2d(1, 6, 5, 1, 2), #padding=2保證輸入輸出尺寸相同
nn.ReLU(), #input_size=(6*28*28)
nn.MaxPool2d(kernel_size=2, stride=2),#output_size=(6*14*14)
)
self.conv2 = nn.Sequential(
nn.Conv2d(6, 16, 5),
nn.ReLU(), #input_size=(16*10*10)
nn.MaxPool2d(2, 2) #output_size=(16*5*5)
)
self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.ReLU()
)
self.fc3 = nn.Linear(84, 10)
# 定義前向傳播過程,輸入為x
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# nn.Linear()的輸入輸出都是維度為一的值,所以要把多維度的tensor展平成一維
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
#使得我們能夠手動輸入命令行參數,就是讓風格變得和Linux命令行差不多
parser = argparse.ArgumentParser()
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #模型保存路徑
parser.add_argument('--net', default='./model/net.pth', help="path to netG (to continue training)") #模型加載路徑
opt = parser.parse_args()
# 超參數設置
EPOCH = 8 #遍歷數據集次數
BATCH_SIZE = 64 #批處理尺寸(batch_size)
LR = 0.001 #學習率
# 定義數據預處理方式
transform = transforms.ToTensor()
# 定義訓練數據集
trainset = tv.datasets.MNIST(
root='./data/',
train=True,
download=True,
transform=transform)
# 定義訓練批處理數據
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=BATCH_SIZE,
shuffle=True,
)
# 定義測試數據集
testset = tv.datasets.MNIST(
root='./data/',
train=False,
download=True,
transform=transform)
# 定義測試批處理數據
testloader = torch.utils.data.DataLoader(
testset,
batch_size=BATCH_SIZE,
shuffle=False,
)
# 定義損失函數loss function 和優(yōu)化方式(采用SGD)
net = LeNet().to(device)
criterion = nn.CrossEntropyLoss() # 交叉熵損失函數,通常用于多分類問題上
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)
# 訓練
if __name__ == "__main__":
for epoch in range(EPOCH):
sum_loss = 0.0
# 數據讀取
for i, data in enumerate(trainloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 每訓練100個batch打印一次平均loss
sum_loss += loss.item()
if i % 100 == 99:
print('[%d, %d] loss: %.03f'
% (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
# 每跑完一次epoch測試一下準確率
with torch.no_grad():
correct = 0
total = 0
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
# 取得分最高的那個類
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('第%d個epoch的識別準確率為:%d%%' % (epoch + 1, (100 * correct / total)))
#torch.save(net.state_dict(), '%s/net_%03d.pth' % (opt.outf, epoch + 1))
更多關于Python相關內容可查看本站專題:《Python數學運算技巧總結》、《Python圖片操作技巧總結》、《Python數據結構與算法教程》、《Python函數使用技巧總結》、《Python字符串操作技巧匯總》及《Python入門與進階經典教程》
希望本文所述對大家Python程序設計有所幫助。

