欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

使用PyTorch實現(xiàn)MNIST手寫體識別代碼

 更新時間:2020年01月18日 15:54:26   作者:kaijie234  
今天小編就為大家分享一篇使用PyTorch實現(xiàn)MNIST手寫體識別代碼,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

實驗環(huán)境

win10 + anaconda + jupyter notebook

Pytorch1.1.0

Python3.7

gpu環(huán)境(可選)

MNIST數(shù)據(jù)集介紹

MNIST 包括6萬張28x28的訓練樣本,1萬張測試樣本,可以說是CV里的“Hello Word”。本文使用的CNN網(wǎng)絡(luò)將MNIST數(shù)據(jù)的識別率提高到了99%。下面我們就開始進行實戰(zhàn)。

導入包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
torch.__version__

定義超參數(shù)

BATCH_SIZE=512
EPOCHS=20 
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

數(shù)據(jù)集

我們直接使用PyTorch中自帶的dataset,并使用DataLoader對訓練數(shù)據(jù)和測試數(shù)據(jù)分別進行讀取。如果下載過數(shù)據(jù)集這里download可選擇False

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=True, download=True, 
            transform=transforms.Compose([
              transforms.ToTensor(),
              transforms.Normalize((0.1307,), (0.3081,))
            ])),
    batch_size=BATCH_SIZE, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('data', train=False, transform=transforms.Compose([
              transforms.ToTensor(),
              transforms.Normalize((0.1307,), (0.3081,))
            ])),
    batch_size=BATCH_SIZE, shuffle=True)

定義網(wǎng)絡(luò)

該網(wǎng)絡(luò)包括兩個卷積層和兩個線性層,最后輸出10個維度,即代表0-9十個數(shù)字。

class ConvNet(nn.Module):
  def __init__(self):
    super().__init__()
    self.conv1=nn.Conv2d(1,10,5) # input:(1,28,28) output:(10,24,24) 
    self.conv2=nn.Conv2d(10,20,3) # input:(10,12,12) output:(20,10,10)
    self.fc1 = nn.Linear(20*10*10,500)
    self.fc2 = nn.Linear(500,10)
  def forward(self,x):
    in_size = x.size(0)
    out = self.conv1(x)
    out = F.relu(out)
    out = F.max_pool2d(out, 2, 2) 
    out = self.conv2(out)
    out = F.relu(out)
    out = out.view(in_size,-1)
    out = self.fc1(out)
    out = F.relu(out)
    out = self.fc2(out)
    out = F.log_softmax(out,dim=1)
    return out

實例化網(wǎng)絡(luò)

model = ConvNet().to(DEVICE) # 將網(wǎng)絡(luò)移動到gpu上
optimizer = optim.Adam(model.parameters()) # 使用Adam優(yōu)化器

定義訓練函數(shù)

def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if(batch_idx+1)%30 == 0: 
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.item()))

定義測試函數(shù)

def test(model, device, test_loader):
  model.eval()
  test_loss = 0
  correct = 0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += F.nll_loss(output, target, reduction='sum').item() # 將一批的損失相加
      pred = output.max(1, keepdim=True)[1] # 找到概率最大的下標
      correct += pred.eq(target.view_as(pred)).sum().item()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))

開始訓練

for epoch in range(1, EPOCHS + 1):
  train(model, DEVICE, train_loader, optimizer, epoch)
  test(model, DEVICE, test_loader)

實驗結(jié)果

Train Epoch: 1 [14848/60000 (25%)]	Loss: 0.375058
Train Epoch: 1 [30208/60000 (50%)]	Loss: 0.255248
Train Epoch: 1 [45568/60000 (75%)]	Loss: 0.128060

Test set: Average loss: 0.0992, Accuracy: 9690/10000 (97%)

Train Epoch: 2 [14848/60000 (25%)]	Loss: 0.093066
Train Epoch: 2 [30208/60000 (50%)]	Loss: 0.087888
Train Epoch: 2 [45568/60000 (75%)]	Loss: 0.068078

Test set: Average loss: 0.0599, Accuracy: 9816/10000 (98%)

Train Epoch: 3 [14848/60000 (25%)]	Loss: 0.043926
Train Epoch: 3 [30208/60000 (50%)]	Loss: 0.037321
Train Epoch: 3 [45568/60000 (75%)]	Loss: 0.068404

Test set: Average loss: 0.0416, Accuracy: 9859/10000 (99%)

Train Epoch: 4 [14848/60000 (25%)]	Loss: 0.031654
Train Epoch: 4 [30208/60000 (50%)]	Loss: 0.041341
Train Epoch: 4 [45568/60000 (75%)]	Loss: 0.036493

Test set: Average loss: 0.0361, Accuracy: 9873/10000 (99%)

Train Epoch: 5 [14848/60000 (25%)]	Loss: 0.027688
Train Epoch: 5 [30208/60000 (50%)]	Loss: 0.019488
Train Epoch: 5 [45568/60000 (75%)]	Loss: 0.018023

Test set: Average loss: 0.0344, Accuracy: 9875/10000 (99%)

Train Epoch: 6 [14848/60000 (25%)]	Loss: 0.024212
Train Epoch: 6 [30208/60000 (50%)]	Loss: 0.018689
Train Epoch: 6 [45568/60000 (75%)]	Loss: 0.040412

Test set: Average loss: 0.0350, Accuracy: 9879/10000 (99%)

Train Epoch: 7 [14848/60000 (25%)]	Loss: 0.030426
Train Epoch: 7 [30208/60000 (50%)]	Loss: 0.026939
Train Epoch: 7 [45568/60000 (75%)]	Loss: 0.010722

Test set: Average loss: 0.0287, Accuracy: 9892/10000 (99%)

Train Epoch: 8 [14848/60000 (25%)]	Loss: 0.021109
Train Epoch: 8 [30208/60000 (50%)]	Loss: 0.034845
Train Epoch: 8 [45568/60000 (75%)]	Loss: 0.011223

Test set: Average loss: 0.0299, Accuracy: 9904/10000 (99%)

Train Epoch: 9 [14848/60000 (25%)]	Loss: 0.011391
Train Epoch: 9 [30208/60000 (50%)]	Loss: 0.008091
Train Epoch: 9 [45568/60000 (75%)]	Loss: 0.039870

Test set: Average loss: 0.0341, Accuracy: 9890/10000 (99%)

Train Epoch: 10 [14848/60000 (25%)]	Loss: 0.026813
Train Epoch: 10 [30208/60000 (50%)]	Loss: 0.011159
Train Epoch: 10 [45568/60000 (75%)]	Loss: 0.024884

Test set: Average loss: 0.0286, Accuracy: 9901/10000 (99%)

Train Epoch: 11 [14848/60000 (25%)]	Loss: 0.006420
Train Epoch: 11 [30208/60000 (50%)]	Loss: 0.003641
Train Epoch: 11 [45568/60000 (75%)]	Loss: 0.003402

Test set: Average loss: 0.0377, Accuracy: 9894/10000 (99%)

Train Epoch: 12 [14848/60000 (25%)]	Loss: 0.006866
Train Epoch: 12 [30208/60000 (50%)]	Loss: 0.012617
Train Epoch: 12 [45568/60000 (75%)]	Loss: 0.008548

Test set: Average loss: 0.0311, Accuracy: 9908/10000 (99%)

Train Epoch: 13 [14848/60000 (25%)]	Loss: 0.010539
Train Epoch: 13 [30208/60000 (50%)]	Loss: 0.002952
Train Epoch: 13 [45568/60000 (75%)]	Loss: 0.002313

Test set: Average loss: 0.0293, Accuracy: 9905/10000 (99%)

Train Epoch: 14 [14848/60000 (25%)]	Loss: 0.002100
Train Epoch: 14 [30208/60000 (50%)]	Loss: 0.000779
Train Epoch: 14 [45568/60000 (75%)]	Loss: 0.005952

Test set: Average loss: 0.0335, Accuracy: 9897/10000 (99%)

Train Epoch: 15 [14848/60000 (25%)]	Loss: 0.006053
Train Epoch: 15 [30208/60000 (50%)]	Loss: 0.002559
Train Epoch: 15 [45568/60000 (75%)]	Loss: 0.002555

Test set: Average loss: 0.0357, Accuracy: 9894/10000 (99%)

Train Epoch: 16 [14848/60000 (25%)]	Loss: 0.000895
Train Epoch: 16 [30208/60000 (50%)]	Loss: 0.004923
Train Epoch: 16 [45568/60000 (75%)]	Loss: 0.002339

Test set: Average loss: 0.0400, Accuracy: 9893/10000 (99%)

Train Epoch: 17 [14848/60000 (25%)]	Loss: 0.004136
Train Epoch: 17 [30208/60000 (50%)]	Loss: 0.000927
Train Epoch: 17 [45568/60000 (75%)]	Loss: 0.002084

Test set: Average loss: 0.0353, Accuracy: 9895/10000 (99%)

Train Epoch: 18 [14848/60000 (25%)]	Loss: 0.004508
Train Epoch: 18 [30208/60000 (50%)]	Loss: 0.001272
Train Epoch: 18 [45568/60000 (75%)]	Loss: 0.000543

Test set: Average loss: 0.0380, Accuracy: 9894/10000 (99%)

Train Epoch: 19 [14848/60000 (25%)]	Loss: 0.001699
Train Epoch: 19 [30208/60000 (50%)]	Loss: 0.000661
Train Epoch: 19 [45568/60000 (75%)]	Loss: 0.000275

Test set: Average loss: 0.0339, Accuracy: 9905/10000 (99%)

Train Epoch: 20 [14848/60000 (25%)]	Loss: 0.000441
Train Epoch: 20 [30208/60000 (50%)]	Loss: 0.000695
Train Epoch: 20 [45568/60000 (75%)]	Loss: 0.000467

Test set: Average loss: 0.0396, Accuracy: 9894/10000 (99%)

總結(jié)

一個實際項目的工作流程:找到數(shù)據(jù)集,對數(shù)據(jù)做預(yù)處理,定義我們的模型,調(diào)整超參數(shù),測試訓練,再通過訓練結(jié)果對超參數(shù)進行調(diào)整或者對模型進行調(diào)整。

以上這篇使用PyTorch實現(xiàn)MNIST手寫體識別代碼就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • python點云地面點濾波(Progressive Morphological Filter)算法介紹(PCL庫)

    python點云地面點濾波(Progressive Morphological Filter)算法介紹(PCL庫)

    這篇文章主要介紹了python點云地面點濾波(Progressive Morphological Filter)算法介紹(PCL庫),了解膨脹/腐蝕這兩個基礎(chǔ)操作,可以通過對其進行簡單組合來形成開/閉操作,需要的朋友可以參考下
    2021-08-08
  • 教你使用Pandas直接核算Excel中的快遞費用

    教你使用Pandas直接核算Excel中的快遞費用

    文中仔細說明了怎么根據(jù)賬單核算運費.首先要確定運費規(guī)則,然后根據(jù)運費規(guī)則編寫代碼,生成核算列(快遞費 = 省份*重量),最后輸入賬單,進行核算.將腳本件生成EXE文件,就可以使用啦,需要的朋友可以參考下
    2021-05-05
  • python re模塊常見用法例舉

    python re模塊常見用法例舉

    在本篇文章里小編給大家整理的是一篇關(guān)于python re模塊常見用法例舉內(nèi)容,有興趣的朋友們可以學習下。
    2021-03-03
  • python微信跳一跳游戲輔助代碼解析

    python微信跳一跳游戲輔助代碼解析

    本篇文章給大家詳細講解了用python寫的一個微信跳一跳輔助腳本的源碼,對此有興趣的朋友參考下吧。
    2018-01-01
  • python opencv 圖像拼接的實現(xiàn)方法

    python opencv 圖像拼接的實現(xiàn)方法

    高級圖像拼接也叫作基于特征匹配的圖像拼接,拼接時消去兩幅圖像相同的部分,實現(xiàn)拼接合成全景圖。這篇文章主要介紹了python opencv 圖像拼接,需要的朋友可以參考下
    2019-06-06
  • Python中的數(shù)據(jù)分析詳解

    Python中的數(shù)據(jù)分析詳解

    這篇文章主要介紹了Python中的數(shù)據(jù)分析詳解,對數(shù)據(jù)進行分析,數(shù)據(jù)分析是指根據(jù)分析目的,用適當?shù)慕y(tǒng)計分析方法及工具,對收集來的數(shù)據(jù)進行處理與分析,提取有價值的信息,發(fā)揮數(shù)據(jù)的作用,需要的朋友可以參考下
    2023-07-07
  • Python中%是什么意思?python中百分號如何使用?

    Python中%是什么意思?python中百分號如何使用?

    最近在學習python過程中,發(fā)現(xiàn)了%的一些情況,這里就簡單介紹一下,,需要的朋友可以參考下
    2018-03-03
  • Python遞歸函數(shù) 二分查找算法實現(xiàn)解析

    Python遞歸函數(shù) 二分查找算法實現(xiàn)解析

    這篇文章主要介紹了Python遞歸函數(shù) 二分查找算法實現(xiàn)解析,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下
    2019-08-08
  • python 創(chuàng)建一維的0向量實例

    python 創(chuàng)建一維的0向量實例

    今天小編就為大家分享一篇python 創(chuàng)建一維的0向量實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-12-12
  • Python各種類型裝飾器詳細介紹

    Python各種類型裝飾器詳細介紹

    大家好,本篇文章主要講的是Python各種類型裝飾器詳細介紹,感興趣的同學趕快來看一看吧,對你有幫助的話記得收藏一下,方便下次瀏覽
    2021-12-12

最新評論