使用keras根據(jù)層名稱來初始化網(wǎng)絡(luò)
keras根據(jù)層名稱來初始化網(wǎng)絡(luò)
def get_model(input_shape1=[75, 75, 3], input_shape2=[1], weights=None):
bn_model = 0
trainable = True
# kernel_regularizer = regularizers.l2(1e-4)
kernel_regularizer = None
activation = 'relu'
img_input = Input(shape=input_shape1)
angle_input = Input(shape=input_shape2)
# Block 1
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv1')(img_input)
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
branch_1 = GlobalMaxPooling2D()(x)
# branch_1 = BatchNormalization(momentum=bn_model)(branch_1)
branch_2 = GlobalAveragePooling2D()(x)
# branch_2 = BatchNormalization(momentum=bn_model)(branch_2)
branch_3 = BatchNormalization(momentum=bn_model)(angle_input)
x = (Concatenate()([branch_1, branch_2, branch_3]))
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
# x = Dropout(0.5)(x)
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
x = Dropout(0.6)(x)
output = Dense(1, activation='sigmoid')(x)
model = Model([img_input, angle_input], output)
optimizer = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
if weights is not None:
# 將by_name設(shè)置成True
model.load_weights(weights, by_name=True)
# layer_weights = h5py.File(weights, 'r')
# for idx in range(len(model.layers)):
# model.set_weights()
print 'have prepared the model.'
return model
補(bǔ)充知識(shí):keras.layers.Dense()方法
keras.layers.Dense()是定義網(wǎng)絡(luò)層的基本方法,執(zhí)行的操作是:output = activation(dot(input,kernel)+ bias。
其中activation是激活函數(shù),kernel是權(quán)重矩陣,bias是偏向量。如果層輸入大于2,在進(jìn)行初始點(diǎn)積之前會(huì)將其展平。
代碼如下:
class Dense(Layer):
"""Just your regular densely-connected NN layer.
`Dense` implements the operation:
`output = activation(dot(input, kernel) + bias)`
where `activation` is the element-wise activation function
passed as the `activation` argument, `kernel` is a weights matrix
created by the layer, and `bias` is a bias vector created by the layer
(only applicable if `use_bias` is `True`).
Note: if the input to the layer has a rank greater than 2, then
it is flattened prior to the initial dot product with `kernel`.
# Example
```python
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)
# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))
```
# Arguments
units: Positive integer, dimensionality of the output space.
activation: Activation function to use
(see [activations](../activations.md)).
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation").
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
# Input shape
nD tensor with shape: `(batch_size, ..., input_dim)`.
The most common situation would be
a 2D input with shape `(batch_size, input_dim)`.
# Output shape
nD tensor with shape: `(batch_size, ..., units)`.
For instance, for a 2D input with shape `(batch_size, input_dim)`,
the output would have shape `(batch_size, units)`.
"""
@interfaces.legacy_dense_support
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Dense, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = K.bias_add(output, self.bias)
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def get_config(self):
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(Dense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
參數(shù)說明如下:
units:正整數(shù),輸出空間的維數(shù)。
activation: 激活函數(shù)。如果未指定任何內(nèi)容,則不會(huì)應(yīng)用任何激活函數(shù)。即“線性”激活:a(x)= x)。
use_bias:Boolean,該層是否使用偏向量。
kernel_initializer:權(quán)重矩陣的初始化方法。
bias_initializer:偏向量的初始化方法。
kernel_regularizer:權(quán)重矩陣的正則化方法。
bias_regularizer:偏向量的正則化方法。
activity_regularizer:輸出層正則化方法。
kernel_constraint:權(quán)重矩陣約束函數(shù)。
bias_constraint:偏向量約束函數(shù)。
以上這篇使用keras根據(jù)層名稱來初始化網(wǎng)絡(luò)就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
利用Python的Twisted框架實(shí)現(xiàn)webshell密碼掃描器的教程
這篇文章主要介紹了利用Python的Twisted框架實(shí)現(xiàn)webshell密碼掃描器的教程,用到了Twisted框架的異步通信機(jī)制,需要的朋友可以參考下2015-04-04
深入理解Python變量的數(shù)據(jù)類型和存儲(chǔ)
這篇文章主要介紹了Python變量的數(shù)據(jù)類型和存儲(chǔ),本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-02-02
Python獲取江蘇疫情實(shí)時(shí)數(shù)據(jù)及爬蟲分析
為了關(guān)注疫情狀況,今天我們用python來爬一爬疫情的實(shí)時(shí)數(shù)據(jù),本文通過實(shí)例圖文相結(jié)合給大家介紹的非常詳細(xì),需要的朋友參考下吧2021-08-08
Python 2種方法求某個(gè)范圍內(nèi)的所有素?cái)?shù)(質(zhì)數(shù))
這篇文章主要介紹了Python 2種方法求某個(gè)范圍內(nèi)的所有素?cái)?shù)(質(zhì)數(shù)),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-01-01
pandas將numpy數(shù)組寫入到csv的實(shí)例
今天小編就為大家分享一篇pandas將numpy數(shù)組寫入到csv的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-07-07

