給keras層命名,并提取中間層輸出值,保存到文檔的實例
更新:
感謝評論區(qū)提供的方案。
采用model.summary(),model.get_config()和for循環(huán)均可獲得Keras的層名。
示例如下圖
對于keras特定層的命名,只需在層內添加 name 即可
model.add(Activation('softmax',name='dense_1') ) # 注意 name 要放于函數(shù)內 #提取中間層 from keras.models import Model import keras layer_name = 'dense_1' #獲取層的名稱 intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output)#創(chuàng)建的新模型 intermediate_output = intermediate_layer_model.predict(X_test) doc = open(r'C://Users//CCUT04//Desktop//1.txt','w') for i in intermediate_output: print(i) print(i , file = doc) doc.close()
補充知識:關于用keras提取NN中間layer輸出
Build model... __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== main_input (InputLayer) (None, 89, 39) 0 __________________________________________________________________________________________________ cropping1d_1 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_2 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_3 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_4 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_5 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 85, 195) 0 cropping1d_1[0][0] cropping1d_2[0][0] cropping1d_3[0][0] cropping1d_4[0][0] cropping1d_5[0][0] __________________________________________________________________________________________________ fc1 (BatchNormalization) (None, 85, 195) 780 concatenate_1[0][0] __________________________________________________________________________________________________ fc2 (Bidirectional) (None, 85, 2048) 9994240 fc1[0][0] __________________________________________________________________________________________________ fc3 (BatchNormalization) (None, 85, 2048) 8192 fc2[0][0] __________________________________________________________________________________________________ global_average_pooling1d_1 (Glo (None, 2048) 0 fc3[0][0] __________________________________________________________________________________________________ main_output (Dense) (None, 2) 4098 global_average_pooling1d_1[0][0] ================================================================================================== Total params: 10,007,310 Trainable params: 10,002,824 Non-trainable params: 4,486 __________________________________________________________________________________________________
假設我網(wǎng)絡層數(shù)是上面這個結構.
如果我想得到pooling的輸出, keras上有兩張方法。
intermediate_layer_model = Model(inputs=model.input,outputs=model.get_layer(str('global_average_pooling1d_1')).output) #model.summary() #model.get_layer(str('cropping1d_1')) intermediate_output = intermediate_layer_model.predict(data)
data是你的輸入所用的數(shù)據(jù)....
from keras import backend as K get_11rd_layer_output = K.function([model.layers[0].input], [model.layers[10].output]) layer_output = get_11rd_layer_output([data])[0]
我這里第10層是Pooling層.
這兩個代碼的output是一樣的..
一般我看人用的都是第二個...
以上這篇給keras層命名,并提取中間層輸出值,保存到文檔的實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
淺談Python數(shù)學建模之數(shù)據(jù)導入
數(shù)據(jù)導入是所有數(shù)模編程的第一步,比你想象的更重要。Python 語言中數(shù)據(jù)導入的方法很多。對于數(shù)學建模問題編程來說,選擇什么方法最好呢?答案是:沒有最好的,只有最合適的。對于不同的問題,不同的算法,以及所調用工具包的不同實現(xiàn)方法,對于數(shù)據(jù)就會有不同的要求2021-06-06Python調用graphviz繪制結構化圖形網(wǎng)絡示例
今天小編就為大家分享一篇Python調用graphviz繪制結構化圖形網(wǎng)絡示例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-11-11Python+tkinter使用40行代碼實現(xiàn)計算器功能
這篇文章主要為大家詳細介紹了Python+tkinter使用40行代碼實現(xiàn)計算器功能,具有一定的參考價值,感興趣的小伙伴們可以參考一下2018-01-01使用Selenium實現(xiàn)微博爬蟲(預登錄、展開全文、翻頁)
這篇文章主要介紹了使用Selenium實現(xiàn)微博爬蟲(預登錄、展開全文、翻頁),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2021-04-04