欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

使用keras2.0 將Merge層改為函數(shù)式

 更新時間:2020年05月23日 16:40:26   作者:Addmana  
這篇文章主要介紹了使用keras2.0 將Merge層改為函數(shù)式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

不能再向以前一樣使用

model.add(Merge([Model1,Model2]))

必須使用函數(shù)式

out = Concatenate()([model1.output, model2.output])

補(bǔ)充知識:keras 新版接口修改

1.

# b = MaxPooling2D((3, 3), strides=(1, 1), border_mode='valid', dim_ordering='tf')(x)

b = MaxPooling2D((3, 3), strides=(1, 1), padding='valid', data_format="channels_last")(x)

2.

from keras.layers.merge import concatenate
# x = merge([a, b], mode='concat', concat_axis=-1)
x = concatenate([a, b], axis=-1)

3.

from keras.engine import merge
m = merge([init, x], mode='sum')
Equivalent Keras 2.0.2 code:

from keras.layers import add
m = add([init, x])

4.

 # x = Convolution2D(32 // nb_filters_reduction_factor, 3, 3, subsample=(1, 1), activation='relu',
 #     init='he_normal', border_mode='valid', dim_ordering='tf')(x)
 x = Conv2D(32 // nb_filters_reduction_factor, (3, 3), activation="relu", strides=(1, 1), padding="valid",
    data_format="channels_last",
    kernel_initializer="he_normal")(x)

1.

# b = MaxPooling2D((3, 3), strides=(1, 1), border_mode='valid', dim_ordering='tf')(x)
b = MaxPooling2D((3, 3), strides=(1, 1), padding='valid', data_format="channels_last")(x)

2.

from keras.layers.merge import concatenate
# x = merge([a, b], mode='concat', concat_axis=-1)
x = concatenate([a, b], axis=-1)

3.

from keras.engine import merge
m = merge([init, x], mode='sum')
Equivalent Keras 2.0.2 code:

from keras.layers import add
m = add([init, x])

4.

 # x = Convolution2D(32 // nb_filters_reduction_factor, 3, 3, subsample=(1, 1), activation='relu',
 #     init='he_normal', border_mode='valid', dim_ordering='tf')(x)
 x = Conv2D(32 // nb_filters_reduction_factor, (3, 3), activation="relu", strides=(1, 1), padding="valid",
    data_format="channels_last",
    kernel_initializer="he_normal")(x)

以上這篇使用keras2.0 將Merge層改為函數(shù)式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

最新評論