keras模型保存為tensorflow的二進(jìn)制模型方式
最近需要將使用keras訓(xùn)練的模型移植到手機(jī)上使用, 因此需要轉(zhuǎn)換到tensorflow的二進(jìn)制模型。
折騰一下午,終于找到一個(gè)合適的方法,廢話不多說,直接上代碼:
# coding=utf-8 import sys from keras.models import load_model import tensorflow as tf import os import os.path as osp from keras import backend as K def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a prunned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be prunned so subgraphs that are not neccesary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ from tensorflow.python.framework.graph_util import convert_variables_to_constants graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names) return frozen_graph input_fld = sys.path[0] weight_file = 'your_model.h5' output_graph_name = 'tensor_model.pb' output_fld = input_fld + '/tensorflow_model/' if not os.path.isdir(output_fld): os.mkdir(output_fld) weight_file_path = osp.join(input_fld, weight_file) K.set_learning_phase(0) net_model = load_model(weight_file_path) print('input is :', net_model.input.name) print ('output is:', net_model.output.name) sess = K.get_session() frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name]) from tensorflow.python.framework import graph_io graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False) print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))
上面代碼實(shí)現(xiàn)保存到當(dāng)前目錄的tensor_model目錄下。
驗(yàn)證:
import tensorflow as tf import numpy as np import PIL.Image as Image import cv2 def recognize(jpg_path, pb_file_path): with tf.Graph().as_default(): output_graph_def = tf.GraphDef() with open(pb_file_path, "rb") as f: output_graph_def.ParseFromString(f.read()) tensors = tf.import_graph_def(output_graph_def, name="") print tensors with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) op = sess.graph.get_operations() for m in op: print(m.values()) input_x = sess.graph.get_tensor_by_name("convolution2d_1_input:0") #具體名稱看上一段代碼的input.name print input_x out_softmax = sess.graph.get_tensor_by_name("activation_4/Softmax:0") #具體名稱看上一段代碼的output.name print out_softmax img = cv2.imread(jpg_path, 0) img_out_softmax = sess.run(out_softmax, feed_dict={input_x: 1.0 - np.array(img).reshape((-1,28, 28, 1)) / 255.0}) print "img_out_softmax:", img_out_softmax prediction_labels = np.argmax(img_out_softmax, axis=1) print "label:", prediction_labels pb_path = 'tensorflow_model/constant_graph_weights.pb' img = 'test/6/8_48.jpg' recognize(img, pb_path)
補(bǔ)充知識(shí):如何將keras訓(xùn)練好的模型轉(zhuǎn)換成tensorflow的.pb的文件并在TensorFlow serving環(huán)境調(diào)用
首先keras訓(xùn)練好的模型通過自帶的model.save()保存下來是 .model (.h5) 格式的文件
模型載入是通過 my_model = keras . models . load_model( filepath )
要將該模型轉(zhuǎn)換為.pb 格式的TensorFlow 模型,代碼如下:
# -*- coding: utf-8 -*- from keras.layers.core import Activation, Dense, Flatten from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM from keras.layers import Dropout from keras.layers.wrappers import Bidirectional from keras.models import Sequential,load_model from keras.preprocessing import sequence from sklearn.model_selection import train_test_split import collections from collections import defaultdict import jieba import numpy as np import sys reload(sys) sys.setdefaultencoding('utf-8') import tensorflow as tf import os import os.path as osp from keras import backend as K def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): from tensorflow.python.framework.graph_util import convert_variables_to_constants graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names) return frozen_graph input_fld = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/' weight_file = 'biLSTM_brand_recognize.model' output_graph_name = 'tensor_model_v3.pb' output_fld = input_fld + '/tensorflow_model/' if not os.path.isdir(output_fld): os.mkdir(output_fld) weight_file_path = osp.join(input_fld, weight_file) K.set_learning_phase(0) net_model = load_model(weight_file_path) print('input is :', net_model.input.name) print ('output is:', net_model.output.name) sess = K.get_session() frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name]) from tensorflow.python.framework import graph_io graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=True) print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))
然后模型就存成了.pb格式的文件
問題就來了,這樣存下來的.pb格式的文件是frozen model
如果通過TensorFlow serving 啟用模型的話,會(huì)報(bào)錯(cuò):
E tensorflow_serving/core/aspired_versions_manager.cc:358] Servable {name: mnist version: 1} cannot be loaded: Not found: Could not find meta graph def matching supplied tags: { serve }. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`
因?yàn)門ensorFlow serving 希望讀取的是saved model
于是需要將frozen model 轉(zhuǎn)化為 saved model 格式,解決方案如下:
from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants export_dir = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/saved_model' graph_pb = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/tensorflow_model/tensor_model.pb' builder = tf.saved_model.builder.SavedModelBuilder(export_dir) with tf.gfile.GFile(graph_pb, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sigs = {} with tf.Session(graph=tf.Graph()) as sess: # name="" is important to ensure we don't get spurious prefixing tf.import_graph_def(graph_def, name="") g = tf.get_default_graph() inp = g.get_tensor_by_name(net_model.input.name) out = g.get_tensor_by_name(net_model.output.name) sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \ tf.saved_model.signature_def_utils.predict_signature_def( {"in": inp}, {"out": out}) builder.add_meta_graph_and_variables(sess, [tag_constants.SERVING], signature_def_map=sigs) builder.save()
于是保存下來的saved model 文件夾下就有兩個(gè)文件:
saved_model.pb variables
其中variables 可以為空
于是將.pb 模型導(dǎo)入serving再讀取,成功!
以上這篇keras模型保存為tensorflow的二進(jìn)制模型方式就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Pytorch中求模型準(zhǔn)確率的兩種方法小結(jié)
這篇文章主要介紹了Pytorch中求模型準(zhǔn)確率的兩種方法小結(jié),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-05-05python3.6、opencv安裝環(huán)境搭建過程(圖文教程)
這篇文章主要介紹了python3.6、opencv安裝環(huán)境搭建,本文圖文并茂給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-11-11Pytorch使用VGG16模型進(jìn)行預(yù)測(cè)貓狗二分類實(shí)戰(zhàn)
VGG16是Visual Geometry Group的縮寫,它的名字來源于提出該網(wǎng)絡(luò)的實(shí)驗(yàn)室,本文我們將使用PyTorch來實(shí)現(xiàn)VGG16網(wǎng)絡(luò),用于貓狗預(yù)測(cè)的二分類任務(wù),我們將對(duì)VGG16的網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行適當(dāng)?shù)男薷?以適應(yīng)我們的任務(wù),需要的朋友可以參考下2023-08-08使用Python中的greenlet包實(shí)現(xiàn)并發(fā)編程的入門教程
這篇文章主要介紹了使用Python中的greenlet包實(shí)現(xiàn)并發(fā)編程的入門教程,Python由于GIL的存在并不能實(shí)現(xiàn)真正的多線程并發(fā),greenlet可以做到一個(gè)相對(duì)的替換方案,需要的朋友可以參考下2015-04-04解決pycharm運(yùn)行出錯(cuò),代碼正確結(jié)果不顯示的問題
今天小編就為大家分享一篇解決pycharm運(yùn)行出錯(cuò),代碼正確結(jié)果不顯示的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-11-11