tensorflow實(shí)現(xiàn)殘差網(wǎng)絡(luò)方式(mnist數(shù)據(jù)集)
介紹
殘差網(wǎng)絡(luò)是何凱明大神的神作,效果非常好,深度可以達(dá)到1000層。但是,其實(shí)現(xiàn)起來并沒有那末難,在這里以tensorflow作為框架,實(shí)現(xiàn)基于mnist數(shù)據(jù)集上的殘差網(wǎng)絡(luò),當(dāng)然只是比較淺層的。
如下圖所示:
實(shí)線的Connection部分,表示通道相同,如上圖的第一個(gè)粉色矩形和第三個(gè)粉色矩形,都是3x3x64的特征圖,由于通道相同,所以采用計(jì)算方式為H(x)=F(x)+x
虛線的的Connection部分,表示通道不同,如上圖的第一個(gè)綠色矩形和第三個(gè)綠色矩形,分別是3x3x64和3x3x128的特征圖,通道不同,采用的計(jì)算方式為H(x)=F(x)+Wx,其中W是卷積操作,用來調(diào)整x維度的。
根據(jù)輸入和輸出尺寸是否相同,又分為identity_block和conv_block,每種block有上圖兩種模式,三卷積和二卷積,三卷積速度更快些,因此在這里選擇該種方式。
具體實(shí)現(xiàn)見如下代碼:
#tensorflow基于mnist數(shù)據(jù)集上的VGG11網(wǎng)絡(luò),可以直接運(yùn)行 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf #tensorflow基于mnist實(shí)現(xiàn)VGG11 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #x=mnist.train.images #y=mnist.train.labels #X=mnist.test.images #Y=mnist.test.labels x = tf.placeholder(tf.float32, [None,784]) y = tf.placeholder(tf.float32, [None, 10]) sess = tf.InteractiveSession() def weight_variable(shape): #這里是構(gòu)建初始變量 initial = tf.truncated_normal(shape, mean=0,stddev=0.1) #創(chuàng)建變量 return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #在這里定義殘差網(wǎng)絡(luò)的id_block塊,此時(shí)輸入和輸出維度相同 def identity_block(X_input, kernel_size, in_filter, out_filters, stage, block): """ Implementation of the identity block as defined in Figure 3 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) kernel_size -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network training -- train or test Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) """ # defining name basis block_name = 'res' + str(stage) + block f1, f2, f3 = out_filters with tf.variable_scope(block_name): X_shortcut = X_input #first W_conv1 = weight_variable([1, 1, in_filter, f1]) X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME') b_conv1 = bias_variable([f1]) X = tf.nn.relu(X+ b_conv1) #second W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2]) X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME') b_conv2 = bias_variable([f2]) X = tf.nn.relu(X+ b_conv2) #third W_conv3 = weight_variable([1, 1, f2, f3]) X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='SAME') b_conv3 = bias_variable([f3]) X = tf.nn.relu(X+ b_conv3) #final step add = tf.add(X, X_shortcut) b_conv_fin = bias_variable([f3]) add_result = tf.nn.relu(add+b_conv_fin) return add_result #這里定義conv_block模塊,由于該模塊定義時(shí)輸入和輸出尺度不同,故需要進(jìn)行卷積操作來改變尺度,從而得以相加 def convolutional_block( X_input, kernel_size, in_filter, out_filters, stage, block, stride=2): """ Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) kernel_size -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network training -- train or test stride -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) """ # defining name basis block_name = 'res' + str(stage) + block with tf.variable_scope(block_name): f1, f2, f3 = out_filters x_shortcut = X_input #first W_conv1 = weight_variable([1, 1, in_filter, f1]) X = tf.nn.conv2d(X_input, W_conv1,strides=[1, stride, stride, 1],padding='SAME') b_conv1 = bias_variable([f1]) X = tf.nn.relu(X + b_conv1) #second W_conv2 =weight_variable([kernel_size, kernel_size, f1, f2]) X = tf.nn.conv2d(X, W_conv2, strides=[1,1,1,1], padding='SAME') b_conv2 = bias_variable([f2]) X = tf.nn.relu(X+b_conv2) #third W_conv3 = weight_variable([1,1, f2,f3]) X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1,1], padding='SAME') b_conv3 = bias_variable([f3]) X = tf.nn.relu(X+b_conv3) #shortcut path W_shortcut =weight_variable([1, 1, in_filter, f3]) x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID') #final add = tf.add(x_shortcut, X) #建立最后融合的權(quán)重 b_conv_fin = bias_variable([f3]) add_result = tf.nn.relu(add+ b_conv_fin) return add_result x = tf.reshape(x, [-1,28,28,1]) w_conv1 = weight_variable([2, 2, 1, 64]) x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='SAME') b_conv1 = bias_variable([64]) x = tf.nn.relu(x+b_conv1) #這里操作后變成14x14x64 x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME') #stage 2 x = convolutional_block(X_input=x, kernel_size=3, in_filter=64, out_filters=[64, 64, 256], stage=2, block='a', stride=1) #上述conv_block操作后,尺寸變?yōu)?4x14x256 x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b' ) x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c') #上述操作后張量尺寸變成14x14x256 x = tf.nn.max_pool(x, [1, 2, 2, 1], strides=[1,2,2,1], padding='SAME') #變成7x7x256 flat = tf.reshape(x, [-1,7*7*256]) w_fc1 = weight_variable([7 * 7 *256, 1024]) b_fc1 = bias_variable([1024]) h_fc1 = tf.nn.relu(tf.matmul(flat, w_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) w_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 #建立損失函數(shù),在這里采用交叉熵函數(shù) cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #初始化變量 sess.run(tf.global_variables_initializer()) print("cuiwei") for i in range(2000): batch = mnist.train.next_batch(10) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5})
以上這篇tensorflow實(shí)現(xiàn)殘差網(wǎng)絡(luò)方式(mnist數(shù)據(jù)集)就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
- 基于Tensorflow讀取MNIST數(shù)據(jù)集時(shí)網(wǎng)絡(luò)超時(shí)的解決方式
- 使用tensorflow實(shí)現(xiàn)VGG網(wǎng)絡(luò),訓(xùn)練mnist數(shù)據(jù)集方式
- TensorFlow2.X使用圖片制作簡單的數(shù)據(jù)集訓(xùn)練模型
- C#使用TensorFlow.NET訓(xùn)練自己的數(shù)據(jù)集的方法
- TensorFlow車牌識(shí)別完整版代碼(含車牌數(shù)據(jù)集)
- TensorFlow基于MNIST數(shù)據(jù)集實(shí)現(xiàn)車牌識(shí)別(初步演示版)
- 詳解如何從TensorFlow的mnist數(shù)據(jù)集導(dǎo)出手寫體數(shù)字圖片
- tensorflow實(shí)現(xiàn)加載mnist數(shù)據(jù)集
- Tensorflow 訓(xùn)練自己的數(shù)據(jù)集將數(shù)據(jù)直接導(dǎo)入到內(nèi)存
- 詳解tensorflow訓(xùn)練自己的數(shù)據(jù)集實(shí)現(xiàn)CNN圖像分類
- Tensorflow之構(gòu)建自己的圖片數(shù)據(jù)集TFrecords的方法
- 如何從csv文件構(gòu)建Tensorflow的數(shù)據(jù)集
相關(guān)文章
Python用內(nèi)置模塊來構(gòu)建REST服務(wù)與RPC服務(wù)實(shí)戰(zhàn)
這篇文章主要介紹了Python用內(nèi)置模塊來構(gòu)建REST服務(wù)與RPC服務(wù)實(shí)戰(zhàn),python在網(wǎng)絡(luò)方面封裝一些內(nèi)置模塊,可以用很簡潔的代碼實(shí)現(xiàn)端到端的通信,比如HTTP、RPC服務(wù),下文實(shí)戰(zhàn)詳情,需要的朋友可以參考一下2022-09-09Python 日期區(qū)間處理 (本周本月上周上月...)
這篇文章主要介紹了Python 日期區(qū)間處理 (本周本月上周上月...),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-08-08Windows10+anacond+GPU+pytorch安裝詳細(xì)過程
這篇文章主要介紹了Windows10+anacond+GPU+pytorch安裝詳細(xì)過程,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-03-03Tensorflow訓(xùn)練模型默認(rèn)占滿所有GPU的解決方案
這篇文章主要介紹了Tensorflow訓(xùn)練模型默認(rèn)占滿所有GPU的解決方案,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-05-05Python實(shí)現(xiàn)Pig Latin小游戲?qū)嵗a
這篇文章主要介紹了Python實(shí)現(xiàn)Pig Latin小游戲?qū)嵗a,分享了相關(guān)代碼示例,小編覺得還是挺不錯(cuò)的,具有一定借鑒價(jià)值,需要的朋友可以參考下2018-02-02