keras實(shí)現(xiàn)theano和tensorflow訓(xùn)練的模型相互轉(zhuǎn)換
我就廢話不多說了,大家還是直接看代碼吧~
</pre><pre code_snippet_id="1947416" snippet_file_name="blog_20161025_1_3331239" name="code" class="python">
# coding:utf-8 """ If you want to load pre-trained weights that include convolutions (layers Convolution2D or Convolution1D), be mindful of this: Theano and TensorFlow implement convolution in different ways (TensorFlow actually implements correlation, much like Caffe), and thus, convolution kernels trained with Theano (resp. TensorFlow) need to be converted before being with TensorFlow (resp. Theano). """ from keras import backend as K from keras.utils.np_utils import convert_kernel from text_classifier import keras_text_classifier import sys def th2tf( model): import tensorflow as tf ops = [] for layer in model.layers: if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: original_w = K.get_value(layer.W) converted_w = convert_kernel(original_w) ops.append(tf.assign(layer.W, converted_w).op) K.get_session().run(ops) return model def tf2th(model): for layer in model.layers: if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']: original_w = K.get_value(layer.W) converted_w = convert_kernel(original_w) K.set_value(layer.W, converted_w) return model def conv_layer_converted(tf_weights, th_weights, m = 0): """ :param tf_weights: :param th_weights: :param m: 0-tf2th, 1-th2tf :return: """ if m == 0: # tf2th tc = keras_text_classifier(weights_path=tf_weights) model = tc.loadmodel() model = tf2th(model) model.save_weights(th_weights) elif m == 1: # th2tf tc = keras_text_classifier(weights_path=th_weights) model = tc.loadmodel() model = th2tf(model) model.save_weights(tf_weights) else: print("0-tf2th, 1-th2tf") return if __name__ == '__main__': if len(sys.argv) < 4: print("python tf_weights th_weights <0|1>\n0-tensorflow to theano\n1-theano to tensorflow") sys.exit(0) tf_weights = sys.argv[1] th_weights = sys.argv[2] m = int(sys.argv[3]) conv_layer_converted(tf_weights, th_weights, m)
補(bǔ)充知識(shí):keras學(xué)習(xí)之修改底層為TensorFlow還是theano
我們知道,keras的底層是TensorFlow或者theano
要知道我們是用的哪個(gè)為底層,只需要import keras即可顯示
修改方法:
打開
修改
以上這篇keras實(shí)現(xiàn)theano和tensorflow訓(xùn)練的模型相互轉(zhuǎn)換就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
使用python實(shí)現(xiàn)tcp自動(dòng)重連
下面小編就為大家?guī)硪黄褂胮ython實(shí)現(xiàn)tcp自動(dòng)重連實(shí)現(xiàn)方法。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。2017-07-07caffe binaryproto 與 npy相互轉(zhuǎn)換的實(shí)例講解
今天小編就為大家分享一篇caffe binaryproto 與 npy相互轉(zhuǎn)換的實(shí)例講解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-07-07基于Numpy.convolve使用Python實(shí)現(xiàn)滑動(dòng)平均濾波的思路詳解
這篇文章主要介紹了Python極簡實(shí)現(xiàn)滑動(dòng)平均濾波(基于Numpy.convolve)的相關(guān)知識(shí),非常不錯(cuò),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-05-05python實(shí)現(xiàn)用戶名密碼校驗(yàn)
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)用戶名密碼校驗(yàn),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-03-03