淺談keras中l(wèi)oss與val_loss的關(guān)系
loss函數(shù)如何接受輸入值
keras封裝的比較厲害,官網(wǎng)給的例子寫的云里霧里,
在stackoverflow找到了答案
You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function).
def custom_loss_wrapper(input_tensor): def custom_loss(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) + K.mean(input_tensor) return custom_loss
input_tensor = Input(shape=(10,)) hidden = Dense(100, activation='relu')(input_tensor) out = Dense(1, activation='sigmoid')(hidden) model = Model(input_tensor, out) model.compile(loss=custom_loss_wrapper(input_tensor), optimizer='adam')
You can verify that input_tensor and the loss value will change as different X is passed to the model.
X = np.random.rand(1000, 10) y = np.random.randint(2, size=1000) model.test_on_batch(X, y) # => 1.1974642 X *= 1000 model.test_on_batch(X, y) # => 511.15466
fit_generator
fit_generator ultimately calls train_on_batch which allows for x to be a dictionary.
Also, it could be a list, in which casex is expected to map 1:1 to the inputs defined in Model(input=[in1, …], …)
### generator yield [inputX_1,inputX_2],y ### model model = Model(inputs=[inputX_1,inputX_2],outputs=...)
補充知識:學(xué)習(xí)keras時對loss函數(shù)不同的選擇,則model.fit里的outputs可以是one_hot向量,也可以是整形標(biāo)簽
我就廢話不多說了,大家還是直接看代碼吧~
from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # plt.figure() # plt.imshow(train_images[0]) # plt.colorbar() # plt.grid(False) # plt.show() train_images = train_images / 255.0 test_images = test_images / 255.0 # plt.figure(figsize=(10,10)) # for i in range(25): # plt.subplot(5,5,i+1) # plt.xticks([]) # plt.yticks([]) # plt.grid(False) # plt.imshow(train_images[i], cmap=plt.cm.binary) # plt.xlabel(class_names[train_labels[i]]) # plt.show() model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', #loss = 'sparse_categorical_crossentropy' 則之后的label不需要變成one_hot向量,直接使用整形標(biāo)簽即可 metrics=['accuracy']) one_hot_train_labels = keras.utils.to_categorical(train_labels, num_classes=10) model.fit(train_images, one_hot_train_labels, epochs=10) one_hot_test_labels = keras.utils.to_categorical(test_labels, num_classes=10) test_loss, test_acc = model.evaluate(test_images, one_hot_test_labels) print('\nTest accuracy:', test_acc) # predictions = model.predict(test_images) # predictions[0] # np.argmax(predictions[0]) # test_labels[0]
loss若為loss=‘categorical_crossentropy', 則fit中的第二個輸出必須是一個one_hot類型,
而若loss為loss = ‘sparse_categorical_crossentropy' 則之后的label不需要變成one_hot向量,直接使用整形標(biāo)簽即可
以上這篇淺談keras中l(wèi)oss與val_loss的關(guān)系就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
用Python 爬取貓眼電影數(shù)據(jù)分析《無名之輩》
這篇文章主要介紹了用Python 爬取貓眼電影數(shù)據(jù)分析《無名之輩》,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-07-07ubuntu在線服務(wù)器python?Package安裝到離線服務(wù)器的過程
這篇文章主要介紹了ubuntu在線服務(wù)器python?Package安裝到離線服務(wù)器,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2023-04-04Python和Matlab實現(xiàn)蝙蝠算法的示例代碼
蝙蝠算法是一種搜索全局最優(yōu)解的有效方法,本文主要介紹了Python和Matlab實現(xiàn)蝙蝠算法的示例代碼,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2022-03-03