keras 自定義loss層+接受輸入實(shí)例
loss函數(shù)如何接受輸入值
keras封裝的比較厲害,官網(wǎng)給的例子寫的云里霧里,
在stackoverflow找到了答案
You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function).
def custom_loss_wrapper(input_tensor): def custom_loss(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) + K.mean(input_tensor) return custom_loss
input_tensor = Input(shape=(10,)) hidden = Dense(100, activation='relu')(input_tensor) out = Dense(1, activation='sigmoid')(hidden) model = Model(input_tensor, out) model.compile(loss=custom_loss_wrapper(input_tensor), optimizer='adam')
You can verify that input_tensor and the loss value will change as different X is passed to the model.
X = np.random.rand(1000, 10) y = np.random.randint(2, size=1000) model.test_on_batch(X, y) # => 1.1974642 X *= 1000 model.test_on_batch(X, y) # => 511.15466
fit_generator
fit_generator ultimately calls train_on_batch which allows for x to be a dictionary.
Also, it could be a list, in which casex is expected to map 1:1 to the inputs defined in Model(input=[in1, …], …)
### generator yield [inputX_1,inputX_2],y ### model model = Model(inputs=[inputX_1,inputX_2],outputs=...)
補(bǔ)充知識(shí):keras中自定義 loss損失函數(shù)和修改不同樣本的loss權(quán)重(樣本權(quán)重、類別權(quán)重)
首先辨析一下概念:
1. loss是整體網(wǎng)絡(luò)進(jìn)行優(yōu)化的目標(biāo), 是需要參與到優(yōu)化運(yùn)算,更新權(quán)值W的過程的
2. metric只是作為評(píng)價(jià)網(wǎng)絡(luò)表現(xiàn)的一種“指標(biāo)”, 比如accuracy,是為了直觀地了解算法的效果,充當(dāng)view的作用,并不參與到優(yōu)化過程
一、keras自定義損失函數(shù)
在keras中實(shí)現(xiàn)自定義loss, 可以有兩種方式,一種自定義 loss function, 例如:
# 方式一 def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_sigma - K.square(z_mean) - K.exp(z_log_sigma), axis=-1) return xent_loss + kl_loss vae.compile(optimizer='rmsprop', loss=vae_loss)
或者通過自定義一個(gè)keras的層(layer)來達(dá)到目的, 作為model的最后一層,最后令model.compile中的loss=None:
# 方式二 # Custom loss layer class CustomVariationalLayer(Layer): def __init__(self, **kwargs): self.is_placeholder = True super(CustomVariationalLayer, self).__init__(**kwargs) def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss) def call(self, inputs): x = inputs[0] x_decoded_mean_squash = inputs[1] loss = self.vae_loss(x, x_decoded_mean_squash) self.add_loss(loss, inputs=inputs) # We don't use this output. return x y = CustomVariationalLayer()([x, x_decoded_mean_squash]) vae = Model(x, y) vae.compile(optimizer='rmsprop', loss=None)
在keras中自定義metric非常簡單,需要用y_pred和y_true作為自定義metric函數(shù)的輸入?yún)?shù) 點(diǎn)擊查看metric的設(shè)置
注意事項(xiàng):
1. keras中定義loss,返回的是batch_size長度的tensor, 而不是像tensorflow中那樣是一個(gè)scalar
2. 為了能夠?qū)⒆远x的loss保存到model, 以及可以之后能夠順利load model, 需要把自定義的loss拷貝到keras.losses.py 源代碼文件下,否則運(yùn)行時(shí)找不到相關(guān)信息,keras會(huì)報(bào)錯(cuò)
有時(shí)需要不同的sample的loss施加不同的權(quán)重,這時(shí)需要用到sample_weight,例如
discriminator.train_on_batch(imgs, [valid, labels], class_weight=class_weights)
二、keras中的樣本權(quán)重
# Import import numpy as np from sklearn.utils import class_weight # Example model model = Sequential() model.add(Dense(32, activation='relu', input_dim=100)) model.add(Dense(1, activation='sigmoid')) # Use binary crossentropy loss model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # Calculate the weights for each class so that we can balance the data weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train) # Add the class weights to the training model.fit(x_train, y_train, epochs=10, batch_size=32, class_weight=weights)
Note that the output of the class_weight.compute_class_weight() is an numpy array like this: [2.57569845 0.68250928].
以上這篇keras 自定義loss層+接受輸入實(shí)例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python 實(shí)現(xiàn)分頁顯示從es中獲取的數(shù)據(jù)方法
今天小編就為大家分享一篇python 實(shí)現(xiàn)分頁顯示從es中獲取的數(shù)據(jù)方法,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12python獲取時(shí)間及時(shí)間格式轉(zhuǎn)換問題實(shí)例代碼詳解
這篇文章主要介紹了python獲取時(shí)間及時(shí)間格式轉(zhuǎn)換,需要的朋友可以參考下2018-12-12python 將字符串轉(zhuǎn)換成字典dict的各種方式總結(jié)
下面小編就為大家分享一篇python 將字符串轉(zhuǎn)換成字典dict的各種方式總結(jié),具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-03-03Python獲取江蘇疫情實(shí)時(shí)數(shù)據(jù)及爬蟲分析
為了關(guān)注疫情狀況,今天我們用python來爬一爬疫情的實(shí)時(shí)數(shù)據(jù),本文通過實(shí)例圖文相結(jié)合給大家介紹的非常詳細(xì),需要的朋友參考下吧2021-08-08獲取python運(yùn)行輸出的數(shù)據(jù)并解析存為dataFrame實(shí)例
這篇文章主要介紹了獲取python運(yùn)行輸出的數(shù)據(jù)并解析存為dataFrame實(shí)例,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-07-07詳解Python手寫數(shù)字識(shí)別模型的構(gòu)建與使用
這篇文章主要為大家詳細(xì)介紹了Python中手寫數(shù)字識(shí)別模型的構(gòu)建與使用,文中的示例代碼簡潔易懂,對我們學(xué)習(xí)Python有一定的幫助,需要的可以參考一下2022-12-12