欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

使用keras實(shí)現(xiàn)BiLSTM+CNN+CRF文字標(biāo)記NER

 更新時(shí)間:2020年06月29日 10:02:25   作者:xinfeng2005  
這篇文章主要介紹了使用keras實(shí)現(xiàn)BiLSTM+CNN+CRF文字標(biāo)記NER,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧

我就廢話不多說了,大家還是直接看代碼吧~

import keras
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.callbacks import ModelCheckpoint,Callback
# import keras.backend as K
from keras.layers import *
from keras.models import Model
from keras.optimizers import SGD, RMSprop, Adagrad,Adam
from keras.models import *
from keras.metrics import *
from keras import backend as K
from keras.regularizers import *
from keras.metrics import categorical_accuracy
# from keras.regularizers import activity_l1 #通過L1正則項(xiàng),使得輸出更加稀疏
from keras_contrib.layers import CRF

from visual_callbacks import AccLossPlotter
plotter = AccLossPlotter(graphs=['acc', 'loss'], save_graph=True, save_graph_path=sys.path[0])

# from crf import CRFLayer,create_custom_objects

class LossHistory(Callback):
  def on_train_begin(self, logs={}):
    self.losses = []

  def on_batch_end(self, batch, logs={}):
    self.losses.append(logs.get('loss'))
# def on_epoch_end(self, epoch, logs=None):

word_input = Input(shape=(max_len,), dtype='int32', name='word_input')
word_emb = Embedding(len(char_value_dict)+2, output_dim=64, input_length=max_len, dropout=0.2, name='word_emb')(word_input)
bilstm = Bidirectional(LSTM(32, dropout_W=0.1, dropout_U=0.1, return_sequences=True))(word_emb)
bilstm_d = Dropout(0.1)(bilstm)
half_window_size = 2
paddinglayer = ZeroPadding1D(padding=half_window_size)(word_emb)
conv = Conv1D(nb_filter=50, filter_length=(2 * half_window_size + 1), border_mode='valid')(paddinglayer)
conv_d = Dropout(0.1)(conv)
dense_conv = TimeDistributed(Dense(50))(conv_d)
rnn_cnn_merge = merge([bilstm_d, dense_conv], mode='concat', concat_axis=2)
dense = TimeDistributed(Dense(class_label_count))(rnn_cnn_merge)
crf = CRF(class_label_count, sparse_target=False)
crf_output = crf(dense)
model = Model(input=[word_input], output=[crf_output])
model.compile(loss=crf.loss_function, optimizer='adam', metrics=[crf.accuracy])
model.summary()

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
  json_file.write(model_json)

#編譯模型
# model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['acc',])

# 用于保存驗(yàn)證集誤差最小的參數(shù),當(dāng)驗(yàn)證集誤差減少時(shí),立馬保存下來
checkpointer = ModelCheckpoint(filepath="bilstm_1102_k205_tf130.w", verbose=0, save_best_only=True, save_weights_only=True) #save_weights_only=True
history = LossHistory()

history = model.fit(x_train, y_train,
          batch_size=32, epochs=500,#validation_data = ([x_test, seq_lens_test], y_test),
          callbacks=[checkpointer, history, plotter],
          verbose=1,
          validation_split=0.1,
          )

補(bǔ)充知識(shí):keras訓(xùn)練模型使用自定義CTC損失函數(shù),重載模型時(shí)報(bào)錯(cuò)解決辦法

使用keras訓(xùn)練模型,用到了ctc損失函數(shù),需要自定義損失函數(shù)如下:

self.ctc_model.compile(loss={'ctc': lambda y_true, output: output}, optimizer=opt)

其中l(wèi)oss為自定義函數(shù),使用字典{‘ctc': lambda y_true, output: output}

訓(xùn)練完模型后需要重載模型,如下:

from keras.models import load_model

model=load_model('final_ctc_model.h5')

報(bào)錯(cuò):

Unknown loss function : <lambda>

由于是自定義的損失函數(shù)需要加參數(shù)custom_objects,這里需要定義字典{'': lambda y_true, output: output},正確代碼如下:

model=load_model('final_ctc_model.h5',custom_objects={'<lambda>': lambda y_true, output: output})

可能是因?yàn)橐獙⒆约憾x的loss函數(shù)加入到keras函數(shù)里

在這之前試了很多次,如果用lambda y_true, output: output定義loss

函數(shù)字典名只能是'<lambda>',不能是別的字符

如果自定義一個(gè)函數(shù)如loss_func作為loss函數(shù)如:

self.ctc_model.compile(loss=loss_func, optimizer=opt)

可以在重載時(shí)使用

am=load_model('final_ctc_model.h5',custom_objects={'loss_func': loss_func})

此時(shí)注意字典名和函數(shù)名要相同

以上這篇使用keras實(shí)現(xiàn)BiLSTM+CNN+CRF文字標(biāo)記NER就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論