keras分類(lèi)之二分類(lèi)實(shí)例(Cat and dog)
1. 數(shù)據(jù)準(zhǔn)備
在文件夾下分別建立訓(xùn)練目錄train,驗(yàn)證目錄validation,測(cè)試目錄test,每個(gè)目錄下建立dogs和cats兩個(gè)目錄,在dogs和cats目錄下分別放入拍攝的狗和貓的圖片,圖片的大小可以不一樣。
2. 數(shù)據(jù)讀取
# 存儲(chǔ)數(shù)據(jù)集的目錄 base_dir = 'E:/python learn/dog_and_cat/data/' # 訓(xùn)練、驗(yàn)證數(shù)據(jù)集的目錄 train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') # 貓訓(xùn)練圖片所在目錄 train_cats_dir = os.path.join(train_dir, 'cats') # 狗訓(xùn)練圖片所在目錄 train_dogs_dir = os.path.join(train_dir, 'dogs') # 貓驗(yàn)證圖片所在目錄 validation_cats_dir = os.path.join(validation_dir, 'cats') # 狗驗(yàn)證數(shù)據(jù)集所在目錄 validation_dogs_dir = os.path.join(validation_dir, 'dogs') print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
3. 模型建立
# 搭建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=1e-4), metrics=['acc'])
4. 模型訓(xùn)練
train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, # target directory target_size=(150, 150), # resize圖片 batch_size=20, class_mode='binary' ) validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary' ) for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break hist = model.fit_generator( train_generator, steps_per_epoch=100, epochs=10, validation_data=validation_generator, validation_steps=50 ) model.save('cats_and_dogs_small_1.h5')
5. 模型評(píng)估
acc = hist.history['acc'] val_acc = hist.history['val_acc'] loss = hist.history['loss'] val_loss = hist.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.legend() plt.show()
6. 預(yù)測(cè)
imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg' test_image = image.load_img(imagename, target_size = (150, 150)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) result = model.predict(test_image) if result[0][0] == 1: prediction ='dog' else: prediction ='cat' print(prediction)
代碼在spyder下運(yùn)行正常,一般情況下,可以將文件分為兩個(gè)部分,一部分為T(mén)rain.py,包含深度學(xué)習(xí)模型建立、訓(xùn)練和模型的存儲(chǔ),另一部分Predict.py,包含模型的讀取,評(píng)價(jià)和預(yù)測(cè)
補(bǔ)充知識(shí):keras 貓狗大戰(zhàn)自搭網(wǎng)絡(luò)以及vgg16應(yīng)用
導(dǎo)入模塊
import os import numpy as np import tensorflow as tf import random import seaborn as sns import matplotlib.pyplot as plt import keras from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16, preprocess_input from sklearn.model_selection import train_test_split
加載數(shù)據(jù)集
def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False): train_images= [data_dir + i for i in os.listdir(data_dir)] random.shuffle(train_images) def read_image(file_path, preprocess): img = image.load_img(file_path, target_size=(height, width)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) # if preprocess: # x = preprocess_input(x) return x def prep_data(images, proprocess): count = len(images) data = np.ndarray((count, height, width, channels), dtype = np.float32) for i, image_file in enumerate(images): image = read_image(image_file, preprocess) data[i] = image return data def read_labels(file_path): labels = [] for i in file_path: label = 1 if 'dog' in i else 0 labels.append(label) return labels X = prep_data(train_images, preprocess) labels = read_labels(train_images) assert X.shape[0] == len(labels) print("Train shape: {}".format(X.shape)) return X, labels
讀取數(shù)據(jù)集
# 讀取圖片 WIDTH = 150 HEIGHT = 150 CHANNELS = 3 X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)
查看數(shù)據(jù)集信息
# 統(tǒng)計(jì)y sns.countplot(y) # 顯示圖片 def show_cats_and_dogs(X, idx): plt.figure(figsize=(10,5), frameon=True) img = X[idx,:,:,::-1] img = img/255 plt.imshow(img) plt.show() for idx in range(0,3): show_cats_and_dogs(X, idx) train_X = X[0:17500,:,:,:] train_y = y[0:17500] test_X = X[17500:25000,:,:,:] test_y = y[17500:25000] train_X.shape test_X.shape
自定義神經(jīng)網(wǎng)絡(luò)層數(shù)
input_layer = Input((WIDTH, HEIGHT, CHANNELS)) # 第一層 z = input_layer z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Flatten()(z) z = Dense(64)(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = Dropout(0.5)(z) z = Dense(1)(z) z = Activation('sigmoid')(z) model = Model(input_layer, z) model.compile( optimizer = keras.optimizers.RMSprop(), loss = keras.losses.binary_crossentropy, metrics = [keras.metrics.binary_accuracy] ) model.summary()
訓(xùn)練模型
history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True) score = model.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
復(fù)用vgg16模型
def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)): vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape) for layer in vgg16.layers: layer.trainable = False last = vgg16.output # 后面加入自己的模型 x = Flatten()(last) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=vgg16.input, outputs=x) return model
編譯模型
model_vgg16 = vgg16_model() model_vgg16.summary() model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])
訓(xùn)練模型
# 訓(xùn)練模型 history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True) score = model_vgg16.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
以上這篇keras分類(lèi)之二分類(lèi)實(shí)例(Cat and dog)就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
pycharm遠(yuǎn)程連接服務(wù)器并配置python interpreter的方法
這篇文章主要介紹了pycharm遠(yuǎn)程連接服務(wù)器并配置python interpreter的方法,本文通過(guò)圖文并茂的形式給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-12-12python之生產(chǎn)者消費(fèi)者模型實(shí)現(xiàn)詳解
這篇文章主要介紹了python之生產(chǎn)者消費(fèi)者模型實(shí)現(xiàn)詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-07-07python字符串加密解密的三種方法分享(base64 win32com)
這篇文章主要介紹了python字符串加密解密的三種方法,包括用base64、使用win32com.client、自己寫(xiě)的加密解密算法三種方法,大家參考使用吧2014-01-01Django中實(shí)現(xiàn)一個(gè)高性能計(jì)數(shù)器(Counter)實(shí)例
這篇文章主要介紹了Django中實(shí)現(xiàn)一個(gè)高性能計(jì)數(shù)器(Counter)實(shí)例,分解成一步一步去講解,并配有例子,需要的朋友可以參考下2014-07-07python爬蟲(chóng)之BeautifulSoup 使用select方法詳解
本篇文章主要介紹了python爬蟲(chóng)之BeautifulSoup 使用select方法詳解,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-10-10PyTorch+LSTM實(shí)現(xiàn)單變量時(shí)間序列預(yù)測(cè)
時(shí)間序列是指在一段時(shí)間內(nèi)發(fā)生的任何可量化的度量或事件。這篇文章主要為大家介紹了PyTorch+LSTM實(shí)現(xiàn)單變量時(shí)間序列預(yù)測(cè)的相關(guān)資料,需要的可以參考一下2023-02-02Python的ORM框架中SQLAlchemy庫(kù)的查詢(xún)操作的教程
這篇文章主要介紹了Python的ORM框架中SQLAlchemy庫(kù)的查詢(xún)操作的教程,SQLAlchemy用來(lái)操作數(shù)據(jù)庫(kù)十分方便,需要的朋友可以參考下2015-04-04