opencv函數(shù)threshold、adaptiveThreshold、Otsu二值化的實(shí)現(xiàn)
threshold:固定閾值二值化,
ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 輸入圖,只能輸入單通道圖像,通常來說為灰度圖
- dst: 輸出圖
- thresh: 閾值
- maxval: 當(dāng)像素值超過了閾值(或者小于閾值,根據(jù)type來決定),所賦予的值
- type:二值化操作的類型,包含以下5種類型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
官方文檔的示例代碼:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('gradient.png',0) ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV) ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC) ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO) ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in xrange(6): plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
結(jié)果為:
adaptiveThreshold:自適應(yīng)閾值二值化
自適應(yīng)閾值二值化函數(shù)根據(jù)圖片一小塊區(qū)域的值來計(jì)算對應(yīng)區(qū)域的閾值,從而得到也許更為合適的圖片。
dst = cv2.adaptiveThreshold(src, maxval, thresh_type, type, Block Size, C)
- src: 輸入圖,只能輸入單通道圖像,通常來說為灰度圖
- dst: 輸出圖
- maxval: 當(dāng)像素值超過了閾值(或者小于閾值,根據(jù)type來決定),所賦予的值
- thresh_type: 閾值的計(jì)算方法,包含以下2種類型:cv2.ADAPTIVE_THRESH_MEAN_C; cv2.ADAPTIVE_THRESH_GAUSSIAN_C.
- type:二值化操作的類型,與固定閾值函數(shù)相同,包含以下5種類型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV.
- Block Size: 圖片中分塊的大小
- C :閾值計(jì)算方法中的常數(shù)項(xiàng)
官方文檔的示例代碼:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('sudoku.png',0) img = cv2.medianBlur(img,5) ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\ cv2.THRESH_BINARY,11,2) th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) titles = ['Original Image', 'Global Thresholding (v = 127)', 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding'] images = [img, th1, th2, th3] for i in xrange(4): plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') plt.title(titles[i]) plt.xticks([]),plt.yticks([]) plt.show()
結(jié)果為:
Otsu's Binarization: 基于直方圖的二值化
Otsu's Binarization是一種基于直方圖的二值化方法,它需要和threshold函數(shù)配合使用。
Otsu過程:
1. 計(jì)算圖像直方圖;
2. 設(shè)定一閾值,把直方圖強(qiáng)度大于閾值的像素分成一組,把小于閾值的像素分成另外一組;
3. 分別計(jì)算兩組內(nèi)的偏移數(shù),并把偏移數(shù)相加;
4. 把0~255依照順序多為閾值,重復(fù)1-3的步驟,直到得到最小偏移數(shù),其所對應(yīng)的值即為結(jié)果閾值。
官方文檔的示例代碼:
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('noisy2.png',0) # global thresholding ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # Otsu's thresholding ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # Otsu's thresholding after Gaussian filtering blur = cv2.GaussianBlur(img,(5,5),0) ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # plot all the images and their histograms images = [img, 0, th1, img, 0, th2, blur, 0, th3] titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)', 'Original Noisy Image','Histogram',"Otsu's Thresholding", 'Gaussian filtered Image','Histogram',"Otsu's Thresholding"] for i in xrange(3): plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray') plt.title(titles[i*3]), plt.xticks([]), plt.yticks([]) plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256) plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([]) plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray') plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([]) plt.show()
結(jié)果為:
參考文獻(xiàn):http://docs.opencv.org/3.2.0/d7/d4d/tutorial_py_thresholding.html
到此這篇關(guān)于opencv函數(shù)threshold、adaptiveThreshold、Otsu二值化的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)opencv threshold、adaptiveThreshold、Otsu內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python生成單位陣或?qū)顷嚨娜N方式小結(jié)
這篇文章主要介紹了python生成單位陣或?qū)顷嚨娜N方式小結(jié),具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-05-05Python與AI分析時(shí)間序列數(shù)據(jù)
預(yù)測給定輸入序列中的下一個(gè)是機(jī)器學(xué)習(xí)中的另一個(gè)重要概念.本章為您提供有關(guān)分析時(shí)間序列數(shù)據(jù)的詳細(xì)說明,有需要的朋友可以借鑒參考下,希望能夠有所幫助2022-05-05Python編程實(shí)現(xiàn)粒子群算法(PSO)詳解
這篇文章主要介紹了Python編程實(shí)現(xiàn)粒子群算法(PSO)詳解,涉及粒子群算法的原理,過程,以及實(shí)現(xiàn)代碼示例,具有一定參考價(jià)值,需要的朋友可以了解下。2017-11-11python實(shí)現(xiàn)模擬按鍵,自動翻頁看u17漫畫
這篇文章主要介紹了python實(shí)現(xiàn)模擬按鍵,自動翻頁看u17漫畫,十分簡單實(shí)用,需要的朋友可以參考下2015-03-03Python使用multiprocessing實(shí)現(xiàn)多進(jìn)程
當(dāng)我們工作中涉及到處理大量數(shù)據(jù)、并行計(jì)算或并發(fā)任務(wù)時(shí),Python的multiprocessing模塊是一個(gè)強(qiáng)大而實(shí)用的工具,在本文中,我們將探索如何使用multiprocessing模塊實(shí)現(xiàn)多進(jìn)程編程,將介紹進(jìn)程池的概念和用法,需要的朋友可以參考下2024-10-10mac下pycharm設(shè)置python版本的圖文教程
今天小編就為大家分享一篇mac下pycharm設(shè)置python版本的圖文教程,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-06-06