欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

PyTorch一小時(shí)掌握之遷移學(xué)習(xí)篇

 更新時(shí)間:2021年09月08日 09:57:25   作者:我是小白呀  
這篇文章主要介紹了PyTorch一小時(shí)掌握之遷移學(xué)習(xí)篇,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下

概述

遷移學(xué)習(xí) (Transfer Learning) 是把已學(xué)訓(xùn)練好的模型參數(shù)用作新訓(xùn)練模型的起始參數(shù). 遷移學(xué)習(xí)是深度學(xué)習(xí)中非常重要和常用的一個(gè)策略.

在這里插入圖片描述

為什么使用遷移學(xué)習(xí)

更好的結(jié)果

遷移學(xué)習(xí) (Transfer Learning) 可以幫助我們得到更好的結(jié)果.

當(dāng)我們手上的數(shù)據(jù)比較少的時(shí)候, 訓(xùn)練非常容易造成過擬合的現(xiàn)象. 使用遷移學(xué)習(xí)可以幫助我們通過更少的訓(xùn)練數(shù)據(jù)達(dá)到更好的效果. 使得模型的泛化能力更強(qiáng), 訓(xùn)練過程更穩(wěn)定.

在這里插入圖片描述

節(jié)省時(shí)間

遷移學(xué)習(xí) (Transfer Learning) 可以幫助我們節(jié)省時(shí)間.

通過遷徙學(xué)習(xí), 我們站在了巨人的肩膀上. 利用前人花大量時(shí)間訓(xùn)練好的參數(shù), 能幫助我們?cè)谀P偷挠?xùn)練上節(jié)省大把的時(shí)間.

在這里插入圖片描述

加載模型

首先我們需要加載模型, 并指定層數(shù). 常用的模型有:

  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception
  • GoogLeNet
  • ShuffleNet
  • MobileNet

官網(wǎng) API

ResNet152

我們將使用 ResNet 152 和 CIFAR 100 來舉例.

凍層實(shí)現(xiàn)

在這里插入圖片描述

def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實(shí)現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個(gè)權(quán)重參數(shù)
            param.requires_grad = False  # 保留梯度為False

模型初始化

在這里插入圖片描述

def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft

獲取需更新參數(shù)

def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array

訓(xùn)練模型

def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時(shí)間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓(xùn)練和驗(yàn)證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓(xùn)練
            else:
                model.eval()  # 驗(yàn)證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓(xùn)練的時(shí)候計(jì)算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計(jì)算損失
                    loss = criterion(outputs, labels)

                    # 訓(xùn)練階段更新權(quán)重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計(jì)算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓(xùn)練完后用最好的一次當(dāng)做模型最終的結(jié)果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

獲取數(shù)據(jù)

def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測(cè)試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測(cè)試集

    # 獲取測(cè)試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓(xùn)練集和測(cè)試集
    return data_loader

完整代碼

在這里插入圖片描述

完整代碼:

import copy
import torch
from torch.utils.data import DataLoader
import time
from torchsummary import summary
import torchvision
import torchvision.models as models


def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實(shí)現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個(gè)權(quán)重參數(shù)
            param.requires_grad = False  # 保留梯度為False


def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft


def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array


def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時(shí)間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓(xùn)練和驗(yàn)證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓(xùn)練
            else:
                model.eval()  # 驗(yàn)證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓(xùn)練的時(shí)候計(jì)算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計(jì)算損失
                    loss = criterion(outputs, labels)

                    # 訓(xùn)練階段更新權(quán)重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計(jì)算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓(xùn)練完后用最好的一次當(dāng)做模型最終的結(jié)果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs


def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測(cè)試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測(cè)試集

    # 獲取測(cè)試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓(xùn)練集和測(cè)試集
    return data_loader


# 超參數(shù)
filename = "checkpoint.pth"  # 模型保存
feature_exact = True  # 凍層
num_classes = 100  # 輸出的類別數(shù)
batch_size = 1024  # 一次訓(xùn)練的樣本數(shù)目
iteration_num = 10  # 迭代次數(shù)

# 獲取模型
resnet152 = initialize_model(
    model_name="resnet",
    num_classes=num_classes,
    feature_exact=feature_exact,
    use_pretrained=True
)

# 是否使用GPU訓(xùn)練
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda: resnet152.cuda()  # GPU 計(jì)算
print("是否使用 GPU 加速:", use_cuda)

# 輸出網(wǎng)絡(luò)結(jié)構(gòu)
print(summary(resnet152, (3, 32, 32)))

# 訓(xùn)練參數(shù)
params_to_update = parameter_to_update(resnet152)

# 優(yōu)化器
optimizer = torch.optim.Adam(params_to_update, lr=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # 學(xué)習(xí)率每10個(gè)epoch衰減到原來的1/10
criterion = torch.nn.NLLLoss()

if __name__ == "__main__":
    data_loader = get_data()
    resnet152, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(
        model=resnet152,
        dataloaders=data_loader,
        citerion=criterion,
        optimizer=optimizer,
        num_epochs=iteration_num,
        filename=filename
    )

輸出結(jié)果:

是否使用 GPU 加速: True
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 16, 16] 9,408
BatchNorm2d-2 [-1, 64, 16, 16] 128
ReLU-3 [-1, 64, 16, 16] 0
MaxPool2d-4 [-1, 64, 8, 8] 0
Conv2d-5 [-1, 64, 8, 8] 4,096
BatchNorm2d-6 [-1, 64, 8, 8] 128
ReLU-7 [-1, 64, 8, 8] 0
Conv2d-8 [-1, 64, 8, 8] 36,864
BatchNorm2d-9 [-1, 64, 8, 8] 128
ReLU-10 [-1, 64, 8, 8] 0
Conv2d-11 [-1, 256, 8, 8] 16,384
BatchNorm2d-12 [-1, 256, 8, 8] 512
Conv2d-13 [-1, 256, 8, 8] 16,384
BatchNorm2d-14 [-1, 256, 8, 8] 512
ReLU-15 [-1, 256, 8, 8] 0
Bottleneck-16 [-1, 256, 8, 8] 0
Conv2d-17 [-1, 64, 8, 8] 16,384
BatchNorm2d-18 [-1, 64, 8, 8] 128
ReLU-19 [-1, 64, 8, 8] 0
Conv2d-20 [-1, 64, 8, 8] 36,864
BatchNorm2d-21 [-1, 64, 8, 8] 128
ReLU-22 [-1, 64, 8, 8] 0
Conv2d-23 [-1, 256, 8, 8] 16,384
BatchNorm2d-24 [-1, 256, 8, 8] 512
ReLU-25 [-1, 256, 8, 8] 0
Bottleneck-26 [-1, 256, 8, 8] 0
Conv2d-27 [-1, 64, 8, 8] 16,384
BatchNorm2d-28 [-1, 64, 8, 8] 128
ReLU-29 [-1, 64, 8, 8] 0
Conv2d-30 [-1, 64, 8, 8] 36,864
BatchNorm2d-31 [-1, 64, 8, 8] 128
ReLU-32 [-1, 64, 8, 8] 0
Conv2d-33 [-1, 256, 8, 8] 16,384
BatchNorm2d-34 [-1, 256, 8, 8] 512
ReLU-35 [-1, 256, 8, 8] 0
Bottleneck-36 [-1, 256, 8, 8] 0
Conv2d-37 [-1, 128, 8, 8] 32,768
BatchNorm2d-38 [-1, 128, 8, 8] 256
ReLU-39 [-1, 128, 8, 8] 0
Conv2d-40 [-1, 128, 4, 4] 147,456
BatchNorm2d-41 [-1, 128, 4, 4] 256
ReLU-42 [-1, 128, 4, 4] 0
Conv2d-43 [-1, 512, 4, 4] 65,536
BatchNorm2d-44 [-1, 512, 4, 4] 1,024
Conv2d-45 [-1, 512, 4, 4] 131,072
BatchNorm2d-46 [-1, 512, 4, 4] 1,024
ReLU-47 [-1, 512, 4, 4] 0
Bottleneck-48 [-1, 512, 4, 4] 0
Conv2d-49 [-1, 128, 4, 4] 65,536
BatchNorm2d-50 [-1, 128, 4, 4] 256
ReLU-51 [-1, 128, 4, 4] 0
Conv2d-52 [-1, 128, 4, 4] 147,456
BatchNorm2d-53 [-1, 128, 4, 4] 256
ReLU-54 [-1, 128, 4, 4] 0
Conv2d-55 [-1, 512, 4, 4] 65,536
BatchNorm2d-56 [-1, 512, 4, 4] 1,024
ReLU-57 [-1, 512, 4, 4] 0
Bottleneck-58 [-1, 512, 4, 4] 0
Conv2d-59 [-1, 128, 4, 4] 65,536
BatchNorm2d-60 [-1, 128, 4, 4] 256
ReLU-61 [-1, 128, 4, 4] 0
Conv2d-62 [-1, 128, 4, 4] 147,456
BatchNorm2d-63 [-1, 128, 4, 4] 256
ReLU-64 [-1, 128, 4, 4] 0
Conv2d-65 [-1, 512, 4, 4] 65,536
BatchNorm2d-66 [-1, 512, 4, 4] 1,024
ReLU-67 [-1, 512, 4, 4] 0
Bottleneck-68 [-1, 512, 4, 4] 0
Conv2d-69 [-1, 128, 4, 4] 65,536
BatchNorm2d-70 [-1, 128, 4, 4] 256
ReLU-71 [-1, 128, 4, 4] 0
Conv2d-72 [-1, 128, 4, 4] 147,456
BatchNorm2d-73 [-1, 128, 4, 4] 256
ReLU-74 [-1, 128, 4, 4] 0
Conv2d-75 [-1, 512, 4, 4] 65,536
BatchNorm2d-76 [-1, 512, 4, 4] 1,024
ReLU-77 [-1, 512, 4, 4] 0
Bottleneck-78 [-1, 512, 4, 4] 0
Conv2d-79 [-1, 128, 4, 4] 65,536
BatchNorm2d-80 [-1, 128, 4, 4] 256
ReLU-81 [-1, 128, 4, 4] 0
Conv2d-82 [-1, 128, 4, 4] 147,456
BatchNorm2d-83 [-1, 128, 4, 4] 256
ReLU-84 [-1, 128, 4, 4] 0
Conv2d-85 [-1, 512, 4, 4] 65,536
BatchNorm2d-86 [-1, 512, 4, 4] 1,024
ReLU-87 [-1, 512, 4, 4] 0
Bottleneck-88 [-1, 512, 4, 4] 0
Conv2d-89 [-1, 128, 4, 4] 65,536
BatchNorm2d-90 [-1, 128, 4, 4] 256
ReLU-91 [-1, 128, 4, 4] 0
Conv2d-92 [-1, 128, 4, 4] 147,456
BatchNorm2d-93 [-1, 128, 4, 4] 256
ReLU-94 [-1, 128, 4, 4] 0
Conv2d-95 [-1, 512, 4, 4] 65,536
BatchNorm2d-96 [-1, 512, 4, 4] 1,024
ReLU-97 [-1, 512, 4, 4] 0
Bottleneck-98 [-1, 512, 4, 4] 0
Conv2d-99 [-1, 128, 4, 4] 65,536
BatchNorm2d-100 [-1, 128, 4, 4] 256
ReLU-101 [-1, 128, 4, 4] 0
Conv2d-102 [-1, 128, 4, 4] 147,456
BatchNorm2d-103 [-1, 128, 4, 4] 256
ReLU-104 [-1, 128, 4, 4] 0
Conv2d-105 [-1, 512, 4, 4] 65,536
BatchNorm2d-106 [-1, 512, 4, 4] 1,024
ReLU-107 [-1, 512, 4, 4] 0
Bottleneck-108 [-1, 512, 4, 4] 0
Conv2d-109 [-1, 128, 4, 4] 65,536
BatchNorm2d-110 [-1, 128, 4, 4] 256
ReLU-111 [-1, 128, 4, 4] 0
Conv2d-112 [-1, 128, 4, 4] 147,456
BatchNorm2d-113 [-1, 128, 4, 4] 256
ReLU-114 [-1, 128, 4, 4] 0
Conv2d-115 [-1, 512, 4, 4] 65,536
BatchNorm2d-116 [-1, 512, 4, 4] 1,024
ReLU-117 [-1, 512, 4, 4] 0
Bottleneck-118 [-1, 512, 4, 4] 0
Conv2d-119 [-1, 256, 4, 4] 131,072
BatchNorm2d-120 [-1, 256, 4, 4] 512
ReLU-121 [-1, 256, 4, 4] 0
Conv2d-122 [-1, 256, 2, 2] 589,824
BatchNorm2d-123 [-1, 256, 2, 2] 512
ReLU-124 [-1, 256, 2, 2] 0
Conv2d-125 [-1, 1024, 2, 2] 262,144
BatchNorm2d-126 [-1, 1024, 2, 2] 2,048
Conv2d-127 [-1, 1024, 2, 2] 524,288
BatchNorm2d-128 [-1, 1024, 2, 2] 2,048
ReLU-129 [-1, 1024, 2, 2] 0
Bottleneck-130 [-1, 1024, 2, 2] 0
Conv2d-131 [-1, 256, 2, 2] 262,144
BatchNorm2d-132 [-1, 256, 2, 2] 512
ReLU-133 [-1, 256, 2, 2] 0
Conv2d-134 [-1, 256, 2, 2] 589,824
BatchNorm2d-135 [-1, 256, 2, 2] 512
ReLU-136 [-1, 256, 2, 2] 0
Conv2d-137 [-1, 1024, 2, 2] 262,144
BatchNorm2d-138 [-1, 1024, 2, 2] 2,048
ReLU-139 [-1, 1024, 2, 2] 0
Bottleneck-140 [-1, 1024, 2, 2] 0
Conv2d-141 [-1, 256, 2, 2] 262,144
BatchNorm2d-142 [-1, 256, 2, 2] 512
ReLU-143 [-1, 256, 2, 2] 0
Conv2d-144 [-1, 256, 2, 2] 589,824
BatchNorm2d-145 [-1, 256, 2, 2] 512
ReLU-146 [-1, 256, 2, 2] 0
Conv2d-147 [-1, 1024, 2, 2] 262,144
BatchNorm2d-148 [-1, 1024, 2, 2] 2,048
ReLU-149 [-1, 1024, 2, 2] 0
Bottleneck-150 [-1, 1024, 2, 2] 0
Conv2d-151 [-1, 256, 2, 2] 262,144
BatchNorm2d-152 [-1, 256, 2, 2] 512
ReLU-153 [-1, 256, 2, 2] 0
Conv2d-154 [-1, 256, 2, 2] 589,824
BatchNorm2d-155 [-1, 256, 2, 2] 512
ReLU-156 [-1, 256, 2, 2] 0
Conv2d-157 [-1, 1024, 2, 2] 262,144
BatchNorm2d-158 [-1, 1024, 2, 2] 2,048
ReLU-159 [-1, 1024, 2, 2] 0
Bottleneck-160 [-1, 1024, 2, 2] 0
Conv2d-161 [-1, 256, 2, 2] 262,144
BatchNorm2d-162 [-1, 256, 2, 2] 512
ReLU-163 [-1, 256, 2, 2] 0
Conv2d-164 [-1, 256, 2, 2] 589,824
BatchNorm2d-165 [-1, 256, 2, 2] 512
ReLU-166 [-1, 256, 2, 2] 0
Conv2d-167 [-1, 1024, 2, 2] 262,144
BatchNorm2d-168 [-1, 1024, 2, 2] 2,048
ReLU-169 [-1, 1024, 2, 2] 0
Bottleneck-170 [-1, 1024, 2, 2] 0
Conv2d-171 [-1, 256, 2, 2] 262,144
BatchNorm2d-172 [-1, 256, 2, 2] 512
ReLU-173 [-1, 256, 2, 2] 0
Conv2d-174 [-1, 256, 2, 2] 589,824
BatchNorm2d-175 [-1, 256, 2, 2] 512
ReLU-176 [-1, 256, 2, 2] 0
Conv2d-177 [-1, 1024, 2, 2] 262,144
BatchNorm2d-178 [-1, 1024, 2, 2] 2,048
ReLU-179 [-1, 1024, 2, 2] 0
Bottleneck-180 [-1, 1024, 2, 2] 0
Conv2d-181 [-1, 256, 2, 2] 262,144
BatchNorm2d-182 [-1, 256, 2, 2] 512
ReLU-183 [-1, 256, 2, 2] 0
Conv2d-184 [-1, 256, 2, 2] 589,824
BatchNorm2d-185 [-1, 256, 2, 2] 512
ReLU-186 [-1, 256, 2, 2] 0
Conv2d-187 [-1, 1024, 2, 2] 262,144
BatchNorm2d-188 [-1, 1024, 2, 2] 2,048
ReLU-189 [-1, 1024, 2, 2] 0
Bottleneck-190 [-1, 1024, 2, 2] 0
Conv2d-191 [-1, 256, 2, 2] 262,144
BatchNorm2d-192 [-1, 256, 2, 2] 512
ReLU-193 [-1, 256, 2, 2] 0
Conv2d-194 [-1, 256, 2, 2] 589,824
BatchNorm2d-195 [-1, 256, 2, 2] 512
ReLU-196 [-1, 256, 2, 2] 0
Conv2d-197 [-1, 1024, 2, 2] 262,144
BatchNorm2d-198 [-1, 1024, 2, 2] 2,048
ReLU-199 [-1, 1024, 2, 2] 0
Bottleneck-200 [-1, 1024, 2, 2] 0
Conv2d-201 [-1, 256, 2, 2] 262,144
BatchNorm2d-202 [-1, 256, 2, 2] 512
ReLU-203 [-1, 256, 2, 2] 0
Conv2d-204 [-1, 256, 2, 2] 589,824
BatchNorm2d-205 [-1, 256, 2, 2] 512
ReLU-206 [-1, 256, 2, 2] 0
Conv2d-207 [-1, 1024, 2, 2] 262,144
BatchNorm2d-208 [-1, 1024, 2, 2] 2,048
ReLU-209 [-1, 1024, 2, 2] 0
Bottleneck-210 [-1, 1024, 2, 2] 0
Conv2d-211 [-1, 256, 2, 2] 262,144
BatchNorm2d-212 [-1, 256, 2, 2] 512
ReLU-213 [-1, 256, 2, 2] 0
Conv2d-214 [-1, 256, 2, 2] 589,824
BatchNorm2d-215 [-1, 256, 2, 2] 512
ReLU-216 [-1, 256, 2, 2] 0
Conv2d-217 [-1, 1024, 2, 2] 262,144
BatchNorm2d-218 [-1, 1024, 2, 2] 2,048
ReLU-219 [-1, 1024, 2, 2] 0
Bottleneck-220 [-1, 1024, 2, 2] 0
Conv2d-221 [-1, 256, 2, 2] 262,144
BatchNorm2d-222 [-1, 256, 2, 2] 512
ReLU-223 [-1, 256, 2, 2] 0
Conv2d-224 [-1, 256, 2, 2] 589,824
BatchNorm2d-225 [-1, 256, 2, 2] 512
ReLU-226 [-1, 256, 2, 2] 0
Conv2d-227 [-1, 1024, 2, 2] 262,144
BatchNorm2d-228 [-1, 1024, 2, 2] 2,048
ReLU-229 [-1, 1024, 2, 2] 0
Bottleneck-230 [-1, 1024, 2, 2] 0
Conv2d-231 [-1, 256, 2, 2] 262,144
BatchNorm2d-232 [-1, 256, 2, 2] 512
ReLU-233 [-1, 256, 2, 2] 0
Conv2d-234 [-1, 256, 2, 2] 589,824
BatchNorm2d-235 [-1, 256, 2, 2] 512
ReLU-236 [-1, 256, 2, 2] 0
Conv2d-237 [-1, 1024, 2, 2] 262,144
BatchNorm2d-238 [-1, 1024, 2, 2] 2,048
ReLU-239 [-1, 1024, 2, 2] 0
Bottleneck-240 [-1, 1024, 2, 2] 0
Conv2d-241 [-1, 256, 2, 2] 262,144
BatchNorm2d-242 [-1, 256, 2, 2] 512
ReLU-243 [-1, 256, 2, 2] 0
Conv2d-244 [-1, 256, 2, 2] 589,824
BatchNorm2d-245 [-1, 256, 2, 2] 512
ReLU-246 [-1, 256, 2, 2] 0
Conv2d-247 [-1, 1024, 2, 2] 262,144
BatchNorm2d-248 [-1, 1024, 2, 2] 2,048
ReLU-249 [-1, 1024, 2, 2] 0
Bottleneck-250 [-1, 1024, 2, 2] 0
Conv2d-251 [-1, 256, 2, 2] 262,144
BatchNorm2d-252 [-1, 256, 2, 2] 512
ReLU-253 [-1, 256, 2, 2] 0
Conv2d-254 [-1, 256, 2, 2] 589,824
BatchNorm2d-255 [-1, 256, 2, 2] 512
ReLU-256 [-1, 256, 2, 2] 0
Conv2d-257 [-1, 1024, 2, 2] 262,144
BatchNorm2d-258 [-1, 1024, 2, 2] 2,048
ReLU-259 [-1, 1024, 2, 2] 0
Bottleneck-260 [-1, 1024, 2, 2] 0
Conv2d-261 [-1, 256, 2, 2] 262,144
BatchNorm2d-262 [-1, 256, 2, 2] 512
ReLU-263 [-1, 256, 2, 2] 0
Conv2d-264 [-1, 256, 2, 2] 589,824
BatchNorm2d-265 [-1, 256, 2, 2] 512
ReLU-266 [-1, 256, 2, 2] 0
Conv2d-267 [-1, 1024, 2, 2] 262,144
BatchNorm2d-268 [-1, 1024, 2, 2] 2,048
ReLU-269 [-1, 1024, 2, 2] 0
Bottleneck-270 [-1, 1024, 2, 2] 0
Conv2d-271 [-1, 256, 2, 2] 262,144
BatchNorm2d-272 [-1, 256, 2, 2] 512
ReLU-273 [-1, 256, 2, 2] 0
Conv2d-274 [-1, 256, 2, 2] 589,824
BatchNorm2d-275 [-1, 256, 2, 2] 512
ReLU-276 [-1, 256, 2, 2] 0
Conv2d-277 [-1, 1024, 2, 2] 262,144
BatchNorm2d-278 [-1, 1024, 2, 2] 2,048
ReLU-279 [-1, 1024, 2, 2] 0
Bottleneck-280 [-1, 1024, 2, 2] 0
Conv2d-281 [-1, 256, 2, 2] 262,144
BatchNorm2d-282 [-1, 256, 2, 2] 512
ReLU-283 [-1, 256, 2, 2] 0
Conv2d-284 [-1, 256, 2, 2] 589,824
BatchNorm2d-285 [-1, 256, 2, 2] 512
ReLU-286 [-1, 256, 2, 2] 0
Conv2d-287 [-1, 1024, 2, 2] 262,144
BatchNorm2d-288 [-1, 1024, 2, 2] 2,048
ReLU-289 [-1, 1024, 2, 2] 0
Bottleneck-290 [-1, 1024, 2, 2] 0
Conv2d-291 [-1, 256, 2, 2] 262,144
BatchNorm2d-292 [-1, 256, 2, 2] 512
ReLU-293 [-1, 256, 2, 2] 0
Conv2d-294 [-1, 256, 2, 2] 589,824
BatchNorm2d-295 [-1, 256, 2, 2] 512
ReLU-296 [-1, 256, 2, 2] 0
Conv2d-297 [-1, 1024, 2, 2] 262,144
BatchNorm2d-298 [-1, 1024, 2, 2] 2,048
ReLU-299 [-1, 1024, 2, 2] 0
Bottleneck-300 [-1, 1024, 2, 2] 0
Conv2d-301 [-1, 256, 2, 2] 262,144
BatchNorm2d-302 [-1, 256, 2, 2] 512
ReLU-303 [-1, 256, 2, 2] 0
Conv2d-304 [-1, 256, 2, 2] 589,824
BatchNorm2d-305 [-1, 256, 2, 2] 512
ReLU-306 [-1, 256, 2, 2] 0
Conv2d-307 [-1, 1024, 2, 2] 262,144
BatchNorm2d-308 [-1, 1024, 2, 2] 2,048
ReLU-309 [-1, 1024, 2, 2] 0
Bottleneck-310 [-1, 1024, 2, 2] 0
Conv2d-311 [-1, 256, 2, 2] 262,144
BatchNorm2d-312 [-1, 256, 2, 2] 512
ReLU-313 [-1, 256, 2, 2] 0
Conv2d-314 [-1, 256, 2, 2] 589,824
BatchNorm2d-315 [-1, 256, 2, 2] 512
ReLU-316 [-1, 256, 2, 2] 0
Conv2d-317 [-1, 1024, 2, 2] 262,144
BatchNorm2d-318 [-1, 1024, 2, 2] 2,048
ReLU-319 [-1, 1024, 2, 2] 0
Bottleneck-320 [-1, 1024, 2, 2] 0
Conv2d-321 [-1, 256, 2, 2] 262,144
BatchNorm2d-322 [-1, 256, 2, 2] 512
ReLU-323 [-1, 256, 2, 2] 0
Conv2d-324 [-1, 256, 2, 2] 589,824
BatchNorm2d-325 [-1, 256, 2, 2] 512
ReLU-326 [-1, 256, 2, 2] 0
Conv2d-327 [-1, 1024, 2, 2] 262,144
BatchNorm2d-328 [-1, 1024, 2, 2] 2,048
ReLU-329 [-1, 1024, 2, 2] 0
Bottleneck-330 [-1, 1024, 2, 2] 0
Conv2d-331 [-1, 256, 2, 2] 262,144
BatchNorm2d-332 [-1, 256, 2, 2] 512
ReLU-333 [-1, 256, 2, 2] 0
Conv2d-334 [-1, 256, 2, 2] 589,824
BatchNorm2d-335 [-1, 256, 2, 2] 512
ReLU-336 [-1, 256, 2, 2] 0
Conv2d-337 [-1, 1024, 2, 2] 262,144
BatchNorm2d-338 [-1, 1024, 2, 2] 2,048
ReLU-339 [-1, 1024, 2, 2] 0
Bottleneck-340 [-1, 1024, 2, 2] 0
Conv2d-341 [-1, 256, 2, 2] 262,144
BatchNorm2d-342 [-1, 256, 2, 2] 512
ReLU-343 [-1, 256, 2, 2] 0
Conv2d-344 [-1, 256, 2, 2] 589,824
BatchNorm2d-345 [-1, 256, 2, 2] 512
ReLU-346 [-1, 256, 2, 2] 0
Conv2d-347 [-1, 1024, 2, 2] 262,144
BatchNorm2d-348 [-1, 1024, 2, 2] 2,048
ReLU-349 [-1, 1024, 2, 2] 0
Bottleneck-350 [-1, 1024, 2, 2] 0
Conv2d-351 [-1, 256, 2, 2] 262,144
BatchNorm2d-352 [-1, 256, 2, 2] 512
ReLU-353 [-1, 256, 2, 2] 0
Conv2d-354 [-1, 256, 2, 2] 589,824
BatchNorm2d-355 [-1, 256, 2, 2] 512
ReLU-356 [-1, 256, 2, 2] 0
Conv2d-357 [-1, 1024, 2, 2] 262,144
BatchNorm2d-358 [-1, 1024, 2, 2] 2,048
ReLU-359 [-1, 1024, 2, 2] 0
Bottleneck-360 [-1, 1024, 2, 2] 0
Conv2d-361 [-1, 256, 2, 2] 262,144
BatchNorm2d-362 [-1, 256, 2, 2] 512
ReLU-363 [-1, 256, 2, 2] 0
Conv2d-364 [-1, 256, 2, 2] 589,824
BatchNorm2d-365 [-1, 256, 2, 2] 512
ReLU-366 [-1, 256, 2, 2] 0
Conv2d-367 [-1, 1024, 2, 2] 262,144
BatchNorm2d-368 [-1, 1024, 2, 2] 2,048
ReLU-369 [-1, 1024, 2, 2] 0
Bottleneck-370 [-1, 1024, 2, 2] 0
Conv2d-371 [-1, 256, 2, 2] 262,144
BatchNorm2d-372 [-1, 256, 2, 2] 512
ReLU-373 [-1, 256, 2, 2] 0
Conv2d-374 [-1, 256, 2, 2] 589,824
BatchNorm2d-375 [-1, 256, 2, 2] 512
ReLU-376 [-1, 256, 2, 2] 0
Conv2d-377 [-1, 1024, 2, 2] 262,144
BatchNorm2d-378 [-1, 1024, 2, 2] 2,048
ReLU-379 [-1, 1024, 2, 2] 0
Bottleneck-380 [-1, 1024, 2, 2] 0
Conv2d-381 [-1, 256, 2, 2] 262,144
BatchNorm2d-382 [-1, 256, 2, 2] 512
ReLU-383 [-1, 256, 2, 2] 0
Conv2d-384 [-1, 256, 2, 2] 589,824
BatchNorm2d-385 [-1, 256, 2, 2] 512
ReLU-386 [-1, 256, 2, 2] 0
Conv2d-387 [-1, 1024, 2, 2] 262,144
BatchNorm2d-388 [-1, 1024, 2, 2] 2,048
ReLU-389 [-1, 1024, 2, 2] 0
Bottleneck-390 [-1, 1024, 2, 2] 0
Conv2d-391 [-1, 256, 2, 2] 262,144
BatchNorm2d-392 [-1, 256, 2, 2] 512
ReLU-393 [-1, 256, 2, 2] 0
Conv2d-394 [-1, 256, 2, 2] 589,824
BatchNorm2d-395 [-1, 256, 2, 2] 512
ReLU-396 [-1, 256, 2, 2] 0
Conv2d-397 [-1, 1024, 2, 2] 262,144
BatchNorm2d-398 [-1, 1024, 2, 2] 2,048
ReLU-399 [-1, 1024, 2, 2] 0
Bottleneck-400 [-1, 1024, 2, 2] 0
Conv2d-401 [-1, 256, 2, 2] 262,144
BatchNorm2d-402 [-1, 256, 2, 2] 512
ReLU-403 [-1, 256, 2, 2] 0
Conv2d-404 [-1, 256, 2, 2] 589,824
BatchNorm2d-405 [-1, 256, 2, 2] 512
ReLU-406 [-1, 256, 2, 2] 0
Conv2d-407 [-1, 1024, 2, 2] 262,144
BatchNorm2d-408 [-1, 1024, 2, 2] 2,048
ReLU-409 [-1, 1024, 2, 2] 0
Bottleneck-410 [-1, 1024, 2, 2] 0
Conv2d-411 [-1, 256, 2, 2] 262,144
BatchNorm2d-412 [-1, 256, 2, 2] 512
ReLU-413 [-1, 256, 2, 2] 0
Conv2d-414 [-1, 256, 2, 2] 589,824
BatchNorm2d-415 [-1, 256, 2, 2] 512
ReLU-416 [-1, 256, 2, 2] 0
Conv2d-417 [-1, 1024, 2, 2] 262,144
BatchNorm2d-418 [-1, 1024, 2, 2] 2,048
ReLU-419 [-1, 1024, 2, 2] 0
Bottleneck-420 [-1, 1024, 2, 2] 0
Conv2d-421 [-1, 256, 2, 2] 262,144
BatchNorm2d-422 [-1, 256, 2, 2] 512
ReLU-423 [-1, 256, 2, 2] 0
Conv2d-424 [-1, 256, 2, 2] 589,824
BatchNorm2d-425 [-1, 256, 2, 2] 512
ReLU-426 [-1, 256, 2, 2] 0
Conv2d-427 [-1, 1024, 2, 2] 262,144
BatchNorm2d-428 [-1, 1024, 2, 2] 2,048
ReLU-429 [-1, 1024, 2, 2] 0
Bottleneck-430 [-1, 1024, 2, 2] 0
Conv2d-431 [-1, 256, 2, 2] 262,144
BatchNorm2d-432 [-1, 256, 2, 2] 512
ReLU-433 [-1, 256, 2, 2] 0
Conv2d-434 [-1, 256, 2, 2] 589,824
BatchNorm2d-435 [-1, 256, 2, 2] 512
ReLU-436 [-1, 256, 2, 2] 0
Conv2d-437 [-1, 1024, 2, 2] 262,144
BatchNorm2d-438 [-1, 1024, 2, 2] 2,048
ReLU-439 [-1, 1024, 2, 2] 0
Bottleneck-440 [-1, 1024, 2, 2] 0
Conv2d-441 [-1, 256, 2, 2] 262,144
BatchNorm2d-442 [-1, 256, 2, 2] 512
ReLU-443 [-1, 256, 2, 2] 0
Conv2d-444 [-1, 256, 2, 2] 589,824
BatchNorm2d-445 [-1, 256, 2, 2] 512
ReLU-446 [-1, 256, 2, 2] 0
Conv2d-447 [-1, 1024, 2, 2] 262,144
BatchNorm2d-448 [-1, 1024, 2, 2] 2,048
ReLU-449 [-1, 1024, 2, 2] 0
Bottleneck-450 [-1, 1024, 2, 2] 0
Conv2d-451 [-1, 256, 2, 2] 262,144
BatchNorm2d-452 [-1, 256, 2, 2] 512
ReLU-453 [-1, 256, 2, 2] 0
Conv2d-454 [-1, 256, 2, 2] 589,824
BatchNorm2d-455 [-1, 256, 2, 2] 512
ReLU-456 [-1, 256, 2, 2] 0
Conv2d-457 [-1, 1024, 2, 2] 262,144
BatchNorm2d-458 [-1, 1024, 2, 2] 2,048
ReLU-459 [-1, 1024, 2, 2] 0
Bottleneck-460 [-1, 1024, 2, 2] 0
Conv2d-461 [-1, 256, 2, 2] 262,144
BatchNorm2d-462 [-1, 256, 2, 2] 512
ReLU-463 [-1, 256, 2, 2] 0
Conv2d-464 [-1, 256, 2, 2] 589,824
BatchNorm2d-465 [-1, 256, 2, 2] 512
ReLU-466 [-1, 256, 2, 2] 0
Conv2d-467 [-1, 1024, 2, 2] 262,144
BatchNorm2d-468 [-1, 1024, 2, 2] 2,048
ReLU-469 [-1, 1024, 2, 2] 0
Bottleneck-470 [-1, 1024, 2, 2] 0
Conv2d-471 [-1, 256, 2, 2] 262,144
BatchNorm2d-472 [-1, 256, 2, 2] 512
ReLU-473 [-1, 256, 2, 2] 0
Conv2d-474 [-1, 256, 2, 2] 589,824
BatchNorm2d-475 [-1, 256, 2, 2] 512
ReLU-476 [-1, 256, 2, 2] 0
Conv2d-477 [-1, 1024, 2, 2] 262,144
BatchNorm2d-478 [-1, 1024, 2, 2] 2,048
ReLU-479 [-1, 1024, 2, 2] 0
Bottleneck-480 [-1, 1024, 2, 2] 0
Conv2d-481 [-1, 512, 2, 2] 524,288
BatchNorm2d-482 [-1, 512, 2, 2] 1,024
ReLU-483 [-1, 512, 2, 2] 0
Conv2d-484 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-485 [-1, 512, 1, 1] 1,024
ReLU-486 [-1, 512, 1, 1] 0
Conv2d-487 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-488 [-1, 2048, 1, 1] 4,096
Conv2d-489 [-1, 2048, 1, 1] 2,097,152
BatchNorm2d-490 [-1, 2048, 1, 1] 4,096
ReLU-491 [-1, 2048, 1, 1] 0
Bottleneck-492 [-1, 2048, 1, 1] 0
Conv2d-493 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-494 [-1, 512, 1, 1] 1,024
ReLU-495 [-1, 512, 1, 1] 0
Conv2d-496 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-497 [-1, 512, 1, 1] 1,024
ReLU-498 [-1, 512, 1, 1] 0
Conv2d-499 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-500 [-1, 2048, 1, 1] 4,096
ReLU-501 [-1, 2048, 1, 1] 0
Bottleneck-502 [-1, 2048, 1, 1] 0
Conv2d-503 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-504 [-1, 512, 1, 1] 1,024
ReLU-505 [-1, 512, 1, 1] 0
Conv2d-506 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-507 [-1, 512, 1, 1] 1,024
ReLU-508 [-1, 512, 1, 1] 0
Conv2d-509 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-510 [-1, 2048, 1, 1] 4,096
ReLU-511 [-1, 2048, 1, 1] 0
Bottleneck-512 [-1, 2048, 1, 1] 0
AdaptiveAvgPool2d-513 [-1, 2048, 1, 1] 0
Linear-514 [-1, 100] 204,900
LogSoftmax-515 [-1, 100] 0
================================================================
Total params: 58,348,708
Trainable params: 204,900
Non-trainable params: 58,143,808
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 12.40
Params size (MB): 222.58
Estimated Total Size (MB): 234.99
----------------------------------------------------------------
None
Params to learn
fc.0.weight
fc.0.bias
Files already downloaded and verified
Files already downloaded and verified
Epoch 0/9
----------
Time elapsed 0m 21s
train Loss: 7.5111 Acc: 0.1484
Time elapsed 0m 26s
valid Loss: 3.7821 Acc: 0.2493
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:154: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
Optimizer learning rate: 0.0100000

Epoch 1/9
----------
Time elapsed 0m 47s
train Loss: 2.9405 Acc: 0.3109
Time elapsed 0m 52s
valid Loss: 3.2014 Acc: 0.2739
Optimizer learning rate: 0.0100000

Epoch 2/9
----------
Time elapsed 1m 12s
train Loss: 2.5866 Acc: 0.3622
Time elapsed 1m 17s
valid Loss: 3.2239 Acc: 0.2787
Optimizer learning rate: 0.0100000

Epoch 3/9
----------
Time elapsed 1m 38s
train Loss: 2.4077 Acc: 0.3969
Time elapsed 1m 43s
valid Loss: 3.2608 Acc: 0.2811
Optimizer learning rate: 0.0100000

Epoch 4/9
----------
Time elapsed 2m 4s
train Loss: 2.2742 Acc: 0.4263
Time elapsed 2m 9s
valid Loss: 3.4260 Acc: 0.2689
Optimizer learning rate: 0.0100000

Epoch 5/9
----------
Time elapsed 2m 29s
train Loss: 2.1942 Acc: 0.4434
Time elapsed 2m 34s
valid Loss: 3.4697 Acc: 0.2760
Optimizer learning rate: 0.0100000

Epoch 6/9
----------
Time elapsed 2m 54s
train Loss: 2.1369 Acc: 0.4583
Time elapsed 2m 59s
valid Loss: 3.5391 Acc: 0.2744
Optimizer learning rate: 0.0100000

Epoch 7/9
----------
Time elapsed 3m 20s
train Loss: 2.0382 Acc: 0.4771
Time elapsed 3m 24s
valid Loss: 3.5992 Acc: 0.2721
Optimizer learning rate: 0.0100000

Epoch 8/9
----------
Time elapsed 3m 45s
train Loss: 1.9776 Acc: 0.4939
Time elapsed 3m 50s
valid Loss: 3.7533 Acc: 0.2685
Optimizer learning rate: 0.0100000

Epoch 9/9
----------
Time elapsed 4m 11s
train Loss: 1.9309 Acc: 0.5035
Time elapsed 4m 16s
valid Loss: 3.9663 Acc: 0.2558
Optimizer learning rate: 0.0100000

Training complete in 4m 16s
Best val Acc: 0.281100

到此這篇關(guān)于PyTorch一小時(shí)掌握之遷移學(xué)習(xí)篇的文章就介紹到這了,更多相關(guān)PyTorch遷移學(xué)習(xí)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • python實(shí)現(xiàn)簡單日期工具類

    python實(shí)現(xiàn)簡單日期工具類

    這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)簡單日期工具類,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2019-04-04
  • Pytorch在訓(xùn)練時(shí)凍結(jié)某些層使其不參與訓(xùn)練問題(更新梯度)

    Pytorch在訓(xùn)練時(shí)凍結(jié)某些層使其不參與訓(xùn)練問題(更新梯度)

    這篇文章主要介紹了Pytorch在訓(xùn)練時(shí)凍結(jié)某些層使其不參與訓(xùn)練問題(更新梯度),具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2022-11-11
  • Django中多種重定向方法使用詳解

    Django中多種重定向方法使用詳解

    這篇文章主要介紹了Django中多種重定向方法使用詳解,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-07-07
  • 使用Pandas的ExcelWriter操作excel的方法

    使用Pandas的ExcelWriter操作excel的方法

    這篇文章主要介紹了使用Pandas的ExcelWriter操作excel的方法,ExcelWriter這個(gè)插件有個(gè)坑,就是已經(jīng)設(shè)置好的格式是無法更改的,因此,由pandas轉(zhuǎn)成excel的時(shí)候,必須將格式清除,尤其是表頭的格式需要大家多多注意,本文結(jié)合示例代碼講解的非常詳細(xì),需要的朋友參考下吧
    2023-11-11
  • python基礎(chǔ)操作列表推導(dǎo)式

    python基礎(chǔ)操作列表推導(dǎo)式

    列表推導(dǎo)式形式較為簡潔,是利用其它列表創(chuàng)建新列表的一種方式,它的工作方式類似于for循環(huán),也可以嵌套if條件判斷語句,需要的朋友可以參考下
    2023-04-04
  • python實(shí)現(xiàn)單鏈表的方法示例

    python實(shí)現(xiàn)單鏈表的方法示例

    這篇文章主要給大家介紹了關(guān)于python實(shí)現(xiàn)單鏈表的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家學(xué)習(xí)或者使用python具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-09-09
  • 詳解PyQt5 GUI 接收UDP數(shù)據(jù)并動(dòng)態(tài)繪圖的過程(多線程間信號(hào)傳遞)

    詳解PyQt5 GUI 接收UDP數(shù)據(jù)并動(dòng)態(tài)繪圖的過程(多線程間信號(hào)傳遞)

    這篇文章主要介紹了PyQt5 GUI 接收UDP數(shù)據(jù)并動(dòng)態(tài)繪圖(多線程間信號(hào)傳遞),本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2021-09-09
  • python中的參數(shù)類型匹配提醒

    python中的參數(shù)類型匹配提醒

    這篇文章主要介紹了python中的參數(shù)類型匹配提醒,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2022-12-12
  • Python 居然可以在 Excel 中畫畫你知道嗎

    Python 居然可以在 Excel 中畫畫你知道嗎

    哈嘍,哈嘍~對(duì)于Excel大家想到的是不是各種圖表制作,今天我們來個(gè)不一樣的。十字繡大家都知道吧,今天咱們來玩?zhèn)€電子版的十字繡
    2022-02-02
  • 關(guān)于tensorflow和keras版本的對(duì)應(yīng)關(guān)系

    關(guān)于tensorflow和keras版本的對(duì)應(yīng)關(guān)系

    這篇文章主要介紹了關(guān)于tensorflow和keras版本的對(duì)應(yīng)關(guān)系,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2023-06-06

最新評(píng)論