iOS開發(fā)探索多線程GCD常用函數(shù)
正文
前篇文章我們了解了GCD的任務(wù)的原理,接下來我們在探索一下GCD中我們開發(fā)常用的函數(shù)
單例
下面我們從源碼中看一下我們創(chuàng)建單例的時候使用的dispatch_once,都做了什么,是通過什么操作保證全局唯一的
void dispatch_once(dispatch_once_t *val, dispatch_block_t block) {
dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}
void dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func) {
dispatch_once_gate_t l = (dispatch_once_gate_t)val;
#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
if (likely(v == DLOCK_ONCE_DONE)) {
return;
}
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
if (likely(DISPATCH_ONCE_IS_GEN(v))) {
return _dispatch_once_mark_done_if_quiesced(l, v);
}
#endif
#endif
if (_dispatch_once_gate_tryenter(l)) {
return _dispatch_once_callout(l, ctxt, func);
}
return _dispatch_once_wait(l);
}
// 原子屬性,比較 + 交換 &l->dgo_once 是否等于 DLOCK_ONCE_UNLOCKED,相等還沒有執(zhí)行過,將_dispatch_lock_value_for_self() 賦值給 &l->dgo_once,返回true;不等返回false
#define os_atomic_cmpxchg(p, e, v, m) \
({ _os_atomic_basetypeof(p) _r = (e); \
atomic_compare_exchange_strong_explicit(_os_atomic_c11_atomic(p), \
&_r, v, memory_order_##m, memory_order_relaxed); })
static inline bool _dispatch_once_gate_tryenter(dispatch_once_gate_t l) {
return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED, (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
}
和任務(wù)一樣,對block進(jìn)行了封裝,同時通過判斷dispatch_once_t *val的狀態(tài)進(jìn)行判斷,DLOCK_ONCE_DONE直接返回,也就是已經(jīng)執(zhí)行了直接返回,調(diào)用_dispatch_once_gate_tryenter判斷是否執(zhí)行過block,未執(zhí)行_dispatch_once_callout進(jìn)行執(zhí)行代碼,執(zhí)行過調(diào)用_dispatch_once_wait等待執(zhí)行結(jié)束。
static void _dispatch_once_callout(dispatch_once_gate_t l, void *ctxt, dispatch_function_t func) {
_dispatch_client_callout(ctxt, func); // 執(zhí)行函數(shù)
_dispatch_once_gate_broadcast(l); // 標(biāo)記執(zhí)行完成
}
static inline void _dispatch_once_gate_broadcast(dispatch_once_gate_t l) {
dispatch_lock value_self = _dispatch_lock_value_for_self();
uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
v = _dispatch_once_mark_quiescing(l);
#else
v = _dispatch_once_mark_done(l); // 將 &l->dgo_once 設(shè)置成 DLOCK_ONCE_DONE,標(biāo)記函數(shù)已經(jīng)執(zhí)行完成了,廣播的作用
#endif
if (likely((dispatch_lock)v == value_self)) return;
_dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}
void _dispatch_once_wait(dispatch_once_gate_t dgo) {
...省略部分...
for (;;) {
// 從底層獲取 &dgo->dgo_onc 的狀態(tài)
os_atomic_rmw_loop(&dgo->dgo_once, old_v, new_v, relaxed, {
if (likely(old_v == DLOCK_ONCE_DONE)) {
os_atomic_rmw_loop_give_up(return); // 退出循環(huán)
}
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
if (DISPATCH_ONCE_IS_GEN(old_v)) {
os_atomic_rmw_loop_give_up({
os_atomic_thread_fence(acquire);
return _dispatch_once_mark_done_if_quiesced(dgo, old_v);
});
}
#endif
new_v = old_v | (uintptr_t)DLOCK_WAITERS_BIT;
if (new_v == old_v) os_atomic_rmw_loop_give_up(break);
});
...省略部分...
}
}
_dispatch_once_wait中使用死循環(huán),直到DLOCK_ONCE_DONE時調(diào)用os_atomic_rmw_loop_give_up(return);退出循環(huán),通過這種方式保證只創(chuàng)建一份.
柵欄函數(shù)
柵欄函數(shù):前面的任務(wù)沒有執(zhí)行完成時,不執(zhí)行柵欄函數(shù)中的任務(wù),柵欄函數(shù)后面的任務(wù)需等待柵欄函數(shù)中的任務(wù)執(zhí)行完成才能執(zhí)行。
- 柵欄函數(shù)只能攔截同一隊列中的任務(wù)
- 柵欄函數(shù)無法攔截全局隊列,因為系統(tǒng)操作也會使用全局隊列
- 攔截同步隊列和普通的任務(wù)原理相同 柵欄函數(shù)分為同步函數(shù)和異步函數(shù),我們先看一下同步函數(shù)的源碼dispatch_barrier_sync
void dispatch_barrier_sync(dispatch_queue_t dq, dispatch_block_t work) {
...省略...
_dispatch_barrier_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags); // 和之前一樣的封裝block
}
_dispatch_barrier_sync_f -> _dispatch_barrier_sync_f_inline
static inline void _dispatch_barrier_sync_f_inline(dispatch_queue_t dq, void *ctxt, dispatch_function_t func, uintptr_t dc_flags) {
dispatch_tid tid = _dispatch_tid_self();
dispatch_lane_t dl = upcast(dq)._dl;
if (unlikely(!_dispatch_queue_try_acquire_barrier_sync(dl, tid))) {
return _dispatch_sync_f_slow(dl, ctxt, func, DC_FLAG_BARRIER, dl, DC_FLAG_BARRIER | dc_flags);
}
if (unlikely(dl->do_targetq->do_targetq)) {
return _dispatch_sync_recurse(dl, ctxt, func, DC_FLAG_BARRIER | dc_flags);
}
_dispatch_introspection_sync_begin(dl);
_dispatch_lane_barrier_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(_dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags | DC_FLAG_BARRIER)));
}
在_dispatch_barrier_sync_f_inline函數(shù)中有3個執(zhí)行func的函數(shù), 我們將這三個函數(shù)使用符號斷點來查看其調(diào)用的是哪個函數(shù),發(fā)現(xiàn)調(diào)用的是_dispatch_sync_f_slow

static void _dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt, dispatch_function_t func, uintptr_t top_dc_flags, dispatch_queue_class_t dqu, uintptr_t dc_flags) {
dispatch_queue_t top_dq = top_dqu._dq;
dispatch_queue_t dq = dqu._dq;
if (unlikely(!dq->do_targetq)) {
return _dispatch_sync_function_invoke(dq, ctxt, func);
}
...省略部分...
// 等待前面的任務(wù)執(zhí)行完成
_dispatch_trace_item_push(top_dq, &dsc);
__DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);
if (dsc.dsc_func == NULL) {
// dsc_func being cleared means that the block ran on another thread ie.
// case (2) as listed in _dispatch_async_and_wait_f_slow.
dispatch_queue_t stop_dq = dsc.dc_other;
return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
}
_dispatch_introspection_sync_begin(top_dq);
_dispatch_trace_item_pop(top_dq, &dsc);
_dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
}
繼續(xù)查看_dispatch_sync_f_slow的源碼, 內(nèi)部執(zhí)行func的函數(shù)有兩個,也加入符號斷點查看,最后得到調(diào)用的是_dispatch_sync_invoke_and_complete_recurse, 該方法就是同步任務(wù)調(diào)用的執(zhí)行block任務(wù)的函數(shù), 該函數(shù)內(nèi)部有個_dispatch_sync_complete_recurse函數(shù)
static void _dispatch_sync_complete_recurse(dispatch_queue_t dq, dispatch_queue_t stop_dq, uintptr_t dc_flags){
bool barrier = (dc_flags & DC_FLAG_BARRIER);
do {
if (dq == stop_dq) return;
if (barrier) {
dx_wakeup(dq, 0, DISPATCH_WAKEUP_BARRIER_COMPLETE);
} else {
_dispatch_lane_non_barrier_complete(upcast(dq)._dl, 0);
}
dq = dq->do_targetq;
barrier = (dq->dq_width == 1);
} while (unlikely(dq->do_targetq));
}
該函數(shù)是使用do while,內(nèi)部使用barrier來判斷是否使用柵欄函數(shù),沒有柵欄函數(shù)就調(diào)用隊列中接下來的任務(wù),有柵欄函數(shù)就調(diào)用dx_wakeup
#define dx_wakeup(x, y, z) dx_vtable(x)->dq_wakeup(x, y, z)
dq_wakeup和之前異步任務(wù)的dq_push一樣,是針對不同隊列調(diào)用不同的方法
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_serial, lane,
.do_type = DISPATCH_QUEUE_SERIAL_TYPE,
......
.dq_wakeup = _dispatch_lane_wakeup,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_concurrent, lane,
.do_type = DISPATCH_QUEUE_CONCURRENT_TYPE,
......
.dq_wakeup = _dispatch_lane_wakeup,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_global, lane,
.do_type = DISPATCH_QUEUE_GLOBAL_ROOT_TYPE,
......
.dq_wakeup = _dispatch_root_queue_wakeup,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_main, lane,
.do_type = DISPATCH_QUEUE_MAIN_TYPE,
......
.dq_wakeup = _dispatch_main_queue_wakeup,
);
// 串行隊列及自己創(chuàng)建的并發(fā)隊列
void _dispatch_lane_wakeup(dispatch_lane_class_t dqu, dispatch_qos_t qos, dispatch_wakeup_flags_t flags){
dispatch_queue_wakeup_target_t target = DISPATCH_QUEUE_WAKEUP_NONE;
if (unlikely(flags & DISPATCH_WAKEUP_BARRIER_COMPLETE)) {
// 柵欄函數(shù)任務(wù)完成后調(diào)用該函數(shù)
return _dispatch_lane_barrier_complete(dqu, qos, flags);
}
if (_dispatch_queue_class_probe(dqu)) {
target = DISPATCH_QUEUE_WAKEUP_TARGET;
}
// 喚醒后面隊列中的任務(wù),執(zhí)行柵欄函數(shù)后面隊列里的任務(wù)
return _dispatch_queue_wakeup(dqu, qos, flags, target);
}
// 全局并發(fā)隊列 沒有任何關(guān)于柵欄函數(shù)的操作,所以柵欄函數(shù)對全局并發(fā)隊列無效
void _dispatch_root_queue_wakeup(dispatch_queue_global_t dq, DISPATCH_UNUSED dispatch_qos_t qos, dispatch_wakeup_flags_t flags){
if (!(flags & DISPATCH_WAKEUP_BLOCK_WAIT)) {
DISPATCH_INTERNAL_CRASH(dq->dq_priority, "Don't try to wake up or override a root queue");
}
if (flags & DISPATCH_WAKEUP_CONSUME_2) {
return _dispatch_release_2_tailcall(dq);
}
}
我們可以看到全局并發(fā)隊列的dq_wakeup關(guān)聯(lián)的函數(shù)中沒有任何關(guān)于柵欄函數(shù)的操作,所以柵欄函數(shù)對全局并發(fā)隊列無效.
可是柵欄函數(shù)到底是怎么攔截的呢?
我們還是用全局符號斷點來進(jìn)行查看,將柵欄函數(shù)前面的任務(wù)進(jìn)行延時操作,我們運行發(fā)現(xiàn),調(diào)用_dispatch_sync_f_slow函數(shù)后,并沒有立即調(diào)用_dispatch_sync_invoke_and_complete_recurse,而是等到我們前面的延時操作結(jié)束后,才進(jìn)行的_dispatch_sync_invoke_and_complete_recurse調(diào)用, 也就是說在_dispatch_sync_f_slow函數(shù)調(diào)用后,會等待前面的函數(shù)全部執(zhí)行完成后,才會執(zhí)行柵欄函數(shù)本身的任務(wù)及喚醒柵欄函數(shù)后面的任務(wù).
那為什么柵欄函數(shù)還區(qū)分同步和異步函數(shù)呢?
其實就是柵欄函數(shù)本身的任務(wù)是否需要開辟線程去進(jìn)行執(zhí)行來區(qū)分使用同步還是異步函數(shù)
調(diào)度組 dispatch_group_t
柵欄函數(shù)有自身的局限性,他只能攔截同一隊列中的任務(wù),當(dāng)有多個隊列的任務(wù)時,無法生效,這是我們應(yīng)該使用調(diào)度組dispatch_group_t來進(jìn)行任務(wù)攔截,保障任務(wù)的執(zhí)行順序. dispatch_group_t有兩種書寫方式:
dispatch_group_async(g, dispatch_get_global_queue(0, 0), ^{});
dispatch_group_enter(g); + dispatch_group_leave(g);
這兩種書寫方式,效果是一模一樣的,dispatch_group_async就是dispatch_group_enter和dispatch_group_leave的整合
void dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq, dispatch_block_t db){
dispatch_continuation_t dc = _dispatch_continuation_alloc();
uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_GROUP_ASYNC;
dispatch_qos_t qos;
qos = _dispatch_continuation_init(dc, dq, db, 0, dc_flags);
_dispatch_continuation_group_async(dg, dq, dc, qos);
}
static inline void _dispatch_continuation_group_async(dispatch_group_t dg, dispatch_queue_t dq, dispatch_continuation_t dc, dispatch_qos_t qos) {
dispatch_group_enter(dg);
dc->dc_data = dg;
_dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
static inline void _dispatch_continuation_async(dispatch_queue_class_t dqu, dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags) {
#if DISPATCH_INTROSPECTION
if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
_dispatch_trace_item_push(dqu, dc);
}
#else
(void)dc_flags;
#endif
return dx_push(dqu._dq, dc, qos);
}
dispatch_group_async其內(nèi)部先進(jìn)行dispatch_group_enter,然后和異步函數(shù)一樣進(jìn)行了dx_push調(diào)用來執(zhí)行任務(wù),和我們之前的異步任務(wù)是一樣的流程,在_dispatch_root_queues_init_once-...->_dispatch_continuation_invoke_inline文件里我們可以看到dispatch_group_leave的調(diào)用
static inline void _dispatch_continuation_invoke_inline(dispatch_object_t dou, dispatch_invoke_flags_t flags, dispatch_queue_class_t dqu) {
...省略部分...
if (unlikely(dc_flags & DC_FLAG_GROUP_ASYNC)) {
_dispatch_continuation_with_group_invoke(dc);
}
...省略部分...
}
static inline void _dispatch_continuation_with_group_invoke(dispatch_continuation_t dc) {
struct dispatch_object_s *dou = dc->dc_data;
unsigned long type = dx_type(dou);
if (type == DISPATCH_GROUP_TYPE) {
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
_dispatch_trace_item_complete(dc);
dispatch_group_leave((dispatch_group_t)dou);
} else {
DISPATCH_INTERNAL_CRASH(dx_type(dou), "Unexpected object type");
}
}
下面我們查看一下dispatch_group_enter、dispatch_group_leave的源碼
void dispatch_group_enter(dispatch_group_t dg) {
// The value is decremented on a 32bits wide atomic so that the carry
// for the 0 -> -1 transition is not propagated to the upper 32bits.
uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits, DISPATCH_GROUP_VALUE_INTERVAL, acquire);
uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
if (unlikely(old_value == 0)) {
_dispatch_retain(dg); // <rdar://problem/22318411>
}
if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {
DISPATCH_CLIENT_CRASH(old_bits,
"Too many nested calls to dispatch_group_enter()");
}
}
void dispatch_group_leave(dispatch_group_t dg) {
// The value is incremented on a 64bits wide atomic so that the carry for
// the -1 -> 0 transition increments the generation atomically.
// 修改 dg_state
uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state, DISPATCH_GROUP_VALUE_INTERVAL, release);
uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);
if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
old_state += DISPATCH_GROUP_VALUE_INTERVAL;
do {
new_state = old_state;
if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
} else {
// If the group was entered again since the atomic_add above,
// we can't clear the waiters bit anymore as we don't know for
// which generation the waiters are for
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
}
if (old_state == new_state) break;
} while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state, old_state, new_state, &old_state, relaxed)));
return _dispatch_group_wake(dg, old_state, true);
}
if (unlikely(old_value == 0)) {
DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
"Unbalanced call to dispatch_group_leave()");
}
}
從源碼中我們可以看到dispatch_group_enter進(jìn)行減1操作,增加組內(nèi)當(dāng)前未完成任務(wù)的引用計數(shù); dispatch_group_leave進(jìn)行加1操作,減少組內(nèi)未完成任務(wù)的引用計數(shù);
當(dāng)引用計數(shù)變成0,就會調(diào)用dispatch_group_notify來執(zhí)行后續(xù)代碼.
static inline void _dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq, dispatch_continuation_t dsn) {
uint64_t old_state, new_state;
dispatch_continuation_t prev;
dsn->dc_data = dq;
_dispatch_retain(dq);
prev = os_mpsc_push_update_tail(os_mpsc(dg, dg_notify), dsn, do_next);
if (os_mpsc_push_was_empty(prev)) _dispatch_retain(dg);
os_mpsc_push_update_prev(os_mpsc(dg, dg_notify), prev, dsn, do_next);
if (os_mpsc_push_was_empty(prev)) {
// 監(jiān)聽 dg_state
os_atomic_rmw_loop2o(dg, dg_state, old_state, new_state, release, {
new_state = old_state | DISPATCH_GROUP_HAS_NOTIFS;
if ((uint32_t)old_state == 0) {
os_atomic_rmw_loop_give_up({
return _dispatch_group_wake(dg, new_state, false);
});
}
});
}
}
我們可以看到dispatch_group_notify中會判斷old_state == 0才會執(zhí)行后續(xù)代碼,如果dispatch_group_enter和dispatch_group_leave不是一一對應(yīng)的則永遠(yuǎn)不會執(zhí)行dispatch_group_notify,而且dispatch_group_leave中對old_value == 0,也進(jìn)行了crash判斷,dispatch_group_leave比dispatch_group_enter多的話會直接crash.
信號量 dispatch_semaphore_t
GCD中另一種常用的控制任務(wù)執(zhí)行順序的就是信號量,其主要是控制并發(fā)數(shù)量
- 通過dispatch_semaphore_create(0)來創(chuàng)建信號量并指定信號的大小
- dispatch_semaphore_signal(sem), 發(fā)送信號量,將信號量的值 +1
- dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER) 等待信號量, 將信號量的值 -1, 當(dāng)信號值的值小于0時會阻塞線程一直進(jìn)行等待,當(dāng)信號值的值大于等于0時執(zhí)行后續(xù)代碼
接下來我們還是查看源碼來看看信號量的實現(xiàn)原理
intptr_t dispatch_semaphore_signal(dispatch_semaphore_t dsema) {
// 對信號量的值 + 1
long value = os_atomic_inc2o(dsema, dsema_value, release);
if (likely(value > 0)) {
return 0;
}
if (unlikely(value == LONG_MIN)) {
DISPATCH_CLIENT_CRASH(value, "Unbalanced call to dispatch_semaphore_signal()");
}
return _dispatch_semaphore_signal_slow(dsema);
}
intptr_t _dispatch_semaphore_signal_slow(dispatch_semaphore_t dsema) {
_dispatch_sema4_create(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
_dispatch_sema4_signal(&dsema->dsema_sema, 1);
return 1;
}
我們可以看到signal就只有+1操作,下面我們主要看一下wait是如何進(jìn)行等待的
intptr_t dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout) {
// 對信號量進(jìn)行減1操作
long value = os_atomic_dec2o(dsema, dsema_value, acquire);
// 當(dāng)信號量的值 >= 0直接返回,執(zhí)行后續(xù)代碼
if (likely(value >= 0)) {
return 0;
}
return _dispatch_semaphore_wait_slow(dsema, timeout);
}
static intptr_t _dispatch_semaphore_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout){
long orig;
_dispatch_sema4_create(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
switch (timeout) {
default:
if (!_dispatch_sema4_timedwait(&dsema->dsema_sema, timeout)) {
break;
}
// Fall through and try to undo what the fast path did to
// dsema->dsema_value
case DISPATCH_TIME_NOW:
orig = dsema->dsema_value;
while (orig < 0) {
if (os_atomic_cmpxchgv2o(dsema, dsema_value, orig, orig + 1, &orig, relaxed)) {
return _DSEMA4_TIMEOUT();
}
}
// Another thread called semaphore_signal().
// Fall through and drain the wakeup.
case DISPATCH_TIME_FOREVER:
_dispatch_sema4_wait(&dsema->dsema_sema);
break;
}
return 0;
}
void _dispatch_sema4_wait(_dispatch_sema4_t *sema) {
int ret = 0;
do {
ret = sem_wait(sema);
} while (ret == -1 && errno == EINTR);
DISPATCH_SEMAPHORE_VERIFY_RET(ret);
}
我們可以看到wait進(jìn)行等待的函數(shù) 是根據(jù)我們傳遞的timeout進(jìn)行的判斷,然后進(jìn)行do while循環(huán)阻塞當(dāng)前線程獲取信號量的值,如果信號量>=0跳出循環(huán),執(zhí)行后續(xù)代碼.
- 需要注意的是dispatch_semaphore_signal的數(shù)量不能比dispatch_semaphore_wait少,否則信號量內(nèi)存無法被釋放,會導(dǎo)致程序崩潰,_dispatch_semaphore_dispose函數(shù)中會進(jìn)行判斷當(dāng)前的信號量的值 < 原始信號量的值 會觸發(fā)崩潰.
void _dispatch_semaphore_dispose(dispatch_object_t dou, DISPATCH_UNUSED bool *allow_free) {
dispatch_semaphore_t dsema = dou._dsema;
if (dsema->dsema_value < dsema->dsema_orig) {
DISPATCH_CLIENT_CRASH(dsema->dsema_orig - dsema->dsema_value, "Semaphore object deallocated while in use");
}
_dispatch_sema4_dispose(&dsema->dsema_sema, _DSEMA4_POLICY_FIFO);
}
dispatch_source
dispatch_source 和runloop的source相同, 用于監(jiān)聽事件的,比如計時器,系統(tǒng)內(nèi)存壓力,mach port 待處理消息等.
dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, dispatch_get_global_queue(0, 0)) 創(chuàng)建事件源
dispatch_source_set_event_handler(source, ^{}) 設(shè)置源事件回調(diào)
dispatch_source_merge_data(source, 1) 設(shè)置源事件數(shù)據(jù)
dispatch_source_get_data(source) 獲取源事件數(shù)據(jù)
dispatch_resume(source); 啟動/繼續(xù)
dispatch_suspend(source); 掛起,暫停
dispatch_source_cancel(source); 異步取消源事件
dispatch_cancel(source); 取消源事件
總結(jié)
柵欄函數(shù)攔截同一隊列中的任務(wù),無法攔截全局隊列,因為系統(tǒng)操作也會使用全局隊列,攔截同步隊列就是普通的任務(wù)原理相同
調(diào)度組是通過未完成任務(wù)的引用計數(shù)來控制組里面任務(wù)的執(zhí)行順序
信號量其主要是控制并發(fā)數(shù)量,
以上就是iOS開發(fā)探索多線程GCD常用函數(shù)的詳細(xì)內(nèi)容,更多關(guān)于iOS開發(fā)多線程GCD函數(shù)的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
iOS實現(xiàn)類似格瓦拉電影的轉(zhuǎn)場動畫
這篇文章主要給大家介紹了利用iOS如何實現(xiàn)類似格瓦拉電影的轉(zhuǎn)場動畫,文中給出了詳細(xì)步驟實現(xiàn)代碼,對大家的學(xué)習(xí)和理解很有幫助,有需要的朋友們可以參考借鑒,下面來一起看看吧。2016-11-11
OC - 9.基于Quartz2D繪制下載進(jìn)度條(demo)
這篇文章主要介紹了OC - 9.基于Quartz2D繪制下載進(jìn)度條(demo)的相關(guān)資料,需要的朋友可以參考下2015-11-11

