Pandas如何對(duì)Categorical類型字段數(shù)據(jù)統(tǒng)計(jì)實(shí)戰(zhàn)案例
一、Pandas如何對(duì)Categorical類型字段數(shù)據(jù)統(tǒng)計(jì)
實(shí)戰(zhàn)場(chǎng)景:對(duì)Categorical類型字段數(shù)據(jù)統(tǒng)計(jì),Categorical類型是Pandas擁有的一種特殊數(shù)據(jù)類型,這樣的類型可以包含基于整數(shù)的類別展示和編碼的數(shù)據(jù)
1.1主要知識(shí)點(diǎn)
- 文件讀寫
- 基礎(chǔ)語法
- Pandas
- read_csv
實(shí)戰(zhàn):
1.2創(chuàng)建 python 文件
import pandas as pd
#讀取csv文件
df = pd.read_csv("Telco-Customer-Churn.csv")
?
# 填充 TotalCharges 的缺失值
median = df["TotalCharges"][df["TotalCharges"] != ' '].median()
df.loc[df["TotalCharges"] == ' ', 'TotalCharges'] = median
df["TotalCharges"] = df["TotalCharges"].astype(float)
?
# 將分類列轉(zhuǎn)換成 Categorical 類型
number_columns = ['tenure', 'MonthlyCharges', 'TotalCharges']
for column in number_columns: ?df[column] = df[column].astype(float) #對(duì)三列變成float類型
for column in set(df.columns) - set(number_columns): ?df[column] = pd.Categorical(df[column])
print(df.info())
print(df.describe(include=["category"]))1.3運(yùn)行結(jié)果
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 customerID 7043 non-null category
1 gender 7043 non-null category
2 SeniorCitizen 7043 non-null category
3 Partner 7043 non-null category
4 Dependents 7043 non-null category
5 tenure 7043 non-null float64
6 PhoneService 7043 non-null category
7 MultipleLines 7043 non-null category
8 InternetService 7043 non-null category
9 OnlineSecurity 7043 non-null category
10 OnlineBackup 7043 non-null category
11 DeviceProtection 7043 non-null category
12 TechSupport 7043 non-null category
13 StreamingTV 7043 non-null category
14 StreamingMovies 7043 non-null category
15 Contract 7043 non-null category
16 PaperlessBilling 7043 non-null category
17 PaymentMethod 7043 non-null category
18 MonthlyCharges 7043 non-null float64
19 TotalCharges 7043 non-null float64
20 Churn 7043 non-null category
dtypes: category(18), float64(3)
memory usage: 611.1 KB
None
customerID gender SeniorCitizen Partner ... Contract PaperlessBilling PaymentMethod Churn
count 7043 7043 7043 7043 ... 7043 7043 7043 7043
unique 7043 2 2 2 ... 3 2 4 2
top 0002-ORFBO Male 0 No ... Month-to-month Yes Electronic check No
freq 1 3555 5901 3641 ... 3875 4171 2365 5174[4 rows x 18 columns]
二、Pandas如何從股票數(shù)據(jù)找出收盤價(jià)最低行
實(shí)戰(zhàn)場(chǎng)景:Pandas如何從股票數(shù)據(jù)找出收盤價(jià)最低行
2.1主要知識(shí)點(diǎn)
- 文件讀寫
- 基礎(chǔ)語法
- Pandas
- read_csv
2.2創(chuàng)建 python 文件
"""
數(shù)據(jù)是CSV格式
1、加載到dataframe
2、找出收盤價(jià)最低的索引
3、根據(jù)索引找出數(shù)據(jù)行4 打印結(jié)果數(shù)據(jù)行
"""
import pandas as pd
?
df = pd.read_csv("./00700.HK.csv")
df["Date"] = pd.to_datetime(df["Date"])
df["Year"] = df["Date"].dt.year
df["Month"] = df["Date"].dt.month
print(df)
print(df.groupby("Year")["Close"].mean())
print(df.describe())2.3運(yùn)行結(jié)果
Date Open High Low Close Volume Year Month
0 2021-09-30 456.000 464.600 453.800 461.400 17335451 2021 9
1 2021-09-29 461.600 465.000 450.200 465.000 18250450 2021 9
2 2021-09-28 467.000 476.200 464.600 469.800 20947276 2021 9
3 2021-09-27 459.000 473.000 455.200 464.600 17966998 2021 9
4 2021-09-24 461.400 473.400 456.200 460.200 16656914 2021 9
... ... ... ... ... ... ... ... ...
4262 2004-06-23 4.050 4.450 4.025 4.425 55016000 2004 6
4263 2004-06-21 4.125 4.125 3.950 4.000 22817000 2004 6
4264 2004-06-18 4.200 4.250 3.950 4.025 36598000 2004 6
4265 2004-06-17 4.150 4.375 4.125 4.225 83801500 2004 6
4266 2004-06-16 4.375 4.625 4.075 4.150 439775000 2004 6[4267 rows x 8 columns]
Year
2004 4.338686
2005 6.568927
2006 15.865951
2007 37.882724
2008 54.818367
2009 96.369679
2010 157.299598
2011 189.737398
2012 228.987045
2013 337.136066
2014 271.291498
2015 144.824291
2016 176.562041
2017 291.066667
2018 372.678862
2019 346.225203
2020 479.141129
2021 586.649189
Name: Close, dtype: float64
三、Pandas如何給股票數(shù)據(jù)新增年份和月份
實(shí)戰(zhàn)場(chǎng)景:Pandas如何給股票數(shù)據(jù)新增年份和月份
3.1主要知識(shí)點(diǎn)
- 文件讀寫
- 基礎(chǔ)語法
- Pandas
- Pandas的Series對(duì)象
- DataFrame
實(shí)戰(zhàn):
3.2創(chuàng)建 python 文件
"""
給股票數(shù)據(jù)新增年份和月份
"""
import pandas as pd
?
df = pd.read_csv("./00100.csv")
print(df)
?
# to_datetime變成時(shí)間類型
df["Date"] = pd.to_datetime(df["Date"])
df["Year"] = df["Date"].dt.year
df["Month"] = df["Date"].dt.month
?
print(df)3.3運(yùn)行結(jié)果
Date Open High Low Close Volume
0 2021-09-30 456.000 464.600 453.800 461.400 17335451
1 2021-09-29 461.600 465.000 450.200 465.000 18250450
2 2021-09-28 467.000 476.200 464.600 469.800 20947276
3 2021-09-27 459.000 473.000 455.200 464.600 17966998
4 2021-09-24 461.400 473.400 456.200 460.200 16656914
... ... ... ... ... ... ...
4262 2004-06-23 4.050 4.450 4.025 4.425 55016000
4263 2004-06-21 4.125 4.125 3.950 4.000 22817000
4264 2004-06-18 4.200 4.250 3.950 4.025 36598000
4265 2004-06-17 4.150 4.375 4.125 4.225 83801500
4266 2004-06-16 4.375 4.625 4.075 4.150 439775000[4267 rows x 6 columns]
Date Open High Low Close Volume Year Month
0 2021-09-30 456.000 464.600 453.800 461.400 17335451 2021 9
1 2021-09-29 461.600 465.000 450.200 465.000 18250450 2021 9
2 2021-09-28 467.000 476.200 464.600 469.800 20947276 2021 9
3 2021-09-27 459.000 473.000 455.200 464.600 17966998 2021 9
4 2021-09-24 461.400 473.400 456.200 460.200 16656914 2021 9
... ... ... ... ... ... ... ... ...
4262 2004-06-23 4.050 4.450 4.025 4.425 55016000 2004 6
4263 2004-06-21 4.125 4.125 3.950 4.000 22817000 2004 6
4264 2004-06-18 4.200 4.250 3.950 4.025 36598000 2004 6
4265 2004-06-17 4.150 4.375 4.125 4.225 83801500 2004 6
4266 2004-06-16 4.375 4.625 4.075 4.150 439775000 2004 6[4267 rows x 8 columns]
四、Pandas如何獲取表格的信息和基本數(shù)據(jù)統(tǒng)計(jì)
實(shí)戰(zhàn)場(chǎng)景:Pandas如何獲取表格的信息和基本數(shù)據(jù)統(tǒng)計(jì)
4.1主要知識(shí)點(diǎn)
- 文件讀寫
- 基礎(chǔ)語法
- Pandas
- Pandas的Series對(duì)象
- numpy
實(shí)戰(zhàn):
4.2創(chuàng)建 python 文件
import pandas as pd
import numpy as np
?
df = pd.DataFrame( ?data={ ?"norm": np.random.normal(loc=0, scale=1, size=1000), ?"uniform": np.random.uniform(low=0, high=1, size=1000), ?"binomial": np.random.binomial(n=1, p=0.2, size=1000)}, ?index=pd.date_range(start='2021-01-01', periods=1000))
?
# df.info(),查看多少行,多少列,類型等基本信息
# df.describe(),查看每列的平均值、最小值、最大值、中位數(shù)等統(tǒng)計(jì)信息;
print(df.info())
print()
print(df.describe())4.3運(yùn)行結(jié)果
DatetimeIndex: 1000 entries, 2021-01-01 to 2023-09-27
Freq: D
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 norm 1000 non-null float64
1 uniform 1000 non-null float64
2 binomial 1000 non-null int32
dtypes: float64(2), int32(1)
memory usage: 27.3 KB
Nonenorm uniform binomial
count 1000.000000 1000.000000 1000.000000
mean -0.028664 0.496156 0.215000
std 0.987493 0.292747 0.411028
min -3.110249 0.000629 0.000000
25% -0.697858 0.238848 0.000000
50% -0.023654 0.503438 0.000000
75% 0.652157 0.746672 0.000000
max 3.333271 0.997617 1.000000
五、Pandas如何使用日期和隨機(jī)數(shù)生成表格數(shù)據(jù)類型
實(shí)戰(zhàn)場(chǎng)景:Pandas如何使用日期和隨機(jī)數(shù)生成表格數(shù)據(jù)類型
5.1主要知識(shí)點(diǎn)
- 文件讀寫
- 基礎(chǔ)語法
- Pandas
- Pandas的Series對(duì)象
- numpy
實(shí)戰(zhàn):
5.2創(chuàng)建 python 文件
"""
輸出:一個(gè)DataFrame,包含三列
1000個(gè)日期作為索引:從2021-01-01開始
數(shù)據(jù)列:正態(tài)分布1000個(gè)隨機(jī)數(shù),loc=0,scale=1
數(shù)據(jù)列:均勻分布1000個(gè)隨機(jī)數(shù),low=0,high=1
數(shù)據(jù)列:二項(xiàng)分布1000個(gè)隨機(jī)數(shù),n=1,p=0.2
"""
?
import pandas as pd
import numpy as np
?
#生成索引列,1000天
date_range = pd.date_range(start='2021-01-01', periods=1000)
?
data = { ?'norm': np.random.normal(loc=0, scale=1, size=1000), ?'uniform': np.random.uniform(low=0, high=1, size=1000), ?'binomial': np.random.binomial(n=1, p=0.2, size=1000)
}
df = pd.DataFrame(data=data, index=date_range)
print(df)5.3運(yùn)行結(jié)果
norm uniform binomial
2021-01-01 1.387663 0.223985 0
2021-01-02 2.080345 0.704094 0
2021-01-03 1.615880 0.012283 0
2021-01-04 0.523260 0.053396 0
2021-01-05 -0.872305 0.973047 0
... ... ... ...
2023-09-23 -1.601608 0.423913 0
2023-09-24 -0.712566 0.727326 1
2023-09-25 -0.188441 0.879798 0
2023-09-26 2.249404 0.229298 0
2023-09-27 2.132976 0.472873 0[1000 rows x 3 columns]
到此這篇關(guān)于Pandas如何對(duì)Categorical類型字段數(shù)據(jù)統(tǒng)計(jì)實(shí)戰(zhàn)案例的文章就介紹到這了,更多相關(guān)Pandas Categorical數(shù)據(jù)統(tǒng)計(jì)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
基于Pydantic封裝的通用模型在API請(qǐng)求驗(yàn)證中的應(yīng)用詳解
這篇文章主要介紹了基于Pydantic封裝的通用模型在API請(qǐng)求驗(yàn)證中的應(yīng)用詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步早日升職加薪2023-05-05
python 出現(xiàn)SyntaxError: non-keyword arg after keyword arg錯(cuò)誤解決辦
這篇文章主要介紹了python 出現(xiàn)SyntaxError: non-keyword arg after keyword arg錯(cuò)誤解決辦法的相關(guān)資料,需要的朋友可以參考下2017-02-02
Python數(shù)學(xué)建模StatsModels統(tǒng)計(jì)回歸可視化示例詳解
圖形總是比數(shù)據(jù)更加醒目、直觀。解決統(tǒng)計(jì)回歸問題,無論在分析問題的過程中,還是在結(jié)果的呈現(xiàn)和發(fā)表時(shí),都需要可視化工具的幫助和支持2021-10-10
Python在報(bào)表自動(dòng)化的優(yōu)勢(shì)及實(shí)現(xiàn)流程
本文利用Python實(shí)現(xiàn)報(bào)表自動(dòng)化,通過介紹環(huán)境設(shè)置、數(shù)據(jù)收集和準(zhǔn)備、報(bào)表生成以及自動(dòng)化流程,展示Python的靈活性和豐富的生態(tài)系統(tǒng)在報(bào)表自動(dòng)化中的卓越表現(xiàn),從設(shè)置虛擬環(huán)境到使用Pandas和Matplotlib處理數(shù)據(jù),到借助APScheduler實(shí)現(xiàn)定期自動(dòng)化,每個(gè)步驟都得到詳盡闡述2023-12-12
python實(shí)現(xiàn)可以斷點(diǎn)續(xù)傳和并發(fā)的ftp程序
斷點(diǎn)續(xù)傳和并發(fā)是現(xiàn)在很多ftp程序都支持的功能,如果我們用python如何來做斷點(diǎn)續(xù)傳和并發(fā)了,今天來看一篇python實(shí)現(xiàn)斷點(diǎn)續(xù)傳和并發(fā)的ftp程序例子吧,具體如下。2016-09-09

