欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python使用TextRank算法提取關(guān)鍵詞

 更新時(shí)間:2022年12月09日 09:35:49   作者:皮皮要HAPPY  
textrank是在pagerank的基礎(chǔ)上提出來(lái)的。PageRank對(duì)于每個(gè)網(wǎng)頁(yè)頁(yè)面都給出一個(gè)正實(shí)數(shù),表示網(wǎng)頁(yè)的重要程度,PageRank值越高,表示網(wǎng)頁(yè)越重要,在互聯(lián)網(wǎng)搜索的排序中越可能被排在前面

TextRank 是一種基于 PageRank 的算法,常用于關(guān)鍵詞提取和文本摘要。在本文中,我將通過(guò)一個(gè)關(guān)鍵字提取示例幫助您了解 TextRank 如何工作,并展示 Python 的實(shí)現(xiàn)。

使用 TextRank、NER 等進(jìn)行關(guān)鍵詞提取

1.PageRank簡(jiǎn)介

關(guān)于 PageRank 的文章有很多,我只簡(jiǎn)單介紹一下 PageRank。這將有助于我們稍后理解 TextRank,因?yàn)樗腔?PageRank 的。

PageRank (PR) 是一種用于計(jì)算網(wǎng)頁(yè)權(quán)重的算法。我們可以把所有的網(wǎng)頁(yè)看成一個(gè)大的有向圖。在此圖中,節(jié)點(diǎn)是網(wǎng)頁(yè)。如果網(wǎng)頁(yè) A 有指向網(wǎng)頁(yè) B 的鏈接,則它可以表示為從 A 到 B 的有向邊。

構(gòu)建完整個(gè)圖后,我們可以通過(guò)以下公式為網(wǎng)頁(yè)分配權(quán)重。

這是一個(gè)示例,可以更好地理解上面的符號(hào)。我們有一個(gè)圖表來(lái)表示網(wǎng)頁(yè)如何相互鏈接。每個(gè)節(jié)點(diǎn)代表一個(gè)網(wǎng)頁(yè),箭頭代表邊。我們想得到網(wǎng)頁(yè) e 的權(quán)重。

我們可以將上述函數(shù)中的求和部分重寫為更簡(jiǎn)單的版本。

我們可以通過(guò)下面的函數(shù)得到網(wǎng)頁(yè) e 的權(quán)重。

我們可以看到網(wǎng)頁(yè) e 的權(quán)重取決于其入站頁(yè)面的權(quán)重。我們需要多次運(yùn)行此迭代才能獲得最終權(quán)重。初始化時(shí),每個(gè)網(wǎng)頁(yè)的重要性為 1。

2.PageRank實(shí)現(xiàn)

我們可以用一個(gè)矩陣來(lái)表示圖中 a、b、e、f 之間的入站和出站鏈接。

一行中的每個(gè)節(jié)點(diǎn)表示來(lái)自其他節(jié)點(diǎn)的入站鏈接。例如,對(duì)于 e 行,節(jié)點(diǎn) a 和 b 具有指向節(jié)點(diǎn) e 的出站鏈接。本演示文稿將簡(jiǎn)化更新權(quán)重的計(jì)算。

根據(jù)

?從函數(shù)中,我們應(yīng)該規(guī)范化每一列。

我們使用這個(gè)矩陣乘以所有節(jié)點(diǎn)的權(quán)重。

這只是一次沒(méi)有阻尼系數(shù) d 的迭代。

我們可以使用 Python 進(jìn)行多次迭代。

import numpy as np
g = [[0, 0, 0, 0],
     [0, 0, 0, 0],
     [1, 0.5, 0, 0],
     [0, 0.5, 0, 0]]
g = np.array(g)
pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1
d = 0.85
for iter in range(10):
    pr = 0.15 + 0.85 * np.dot(g, pr)
    print(iter)
    print(pr)

0
[0.15 0.15 1.425 0.575]
1
[0.15 0.15 0.34125 0.21375]
2
[0.15 0.15 0.34125 0.21375]
3
[0.15 0.15 0.34125 0.21375]
4
[0.15 0.15 0.34125 0.21375]
5
[0.15 0.15 0.34125 0.21375]
6
[0.15 0.15 0.34125 0.21375]
7
[0.15 0.15 0.34125 0.21375]
8
[0.15 0.15 0.34125 0.21375]
9
[0.15 0.15 0.34125 0.21375]
10
[0.15 0.15 0.34125 0.21375]

所以 e 的權(quán)重(PageRank值)為 0.34125。

如果我們把有向邊變成無(wú)向邊,我們就可以相應(yīng)地改變矩陣。

規(guī)范化。

我們應(yīng)該相應(yīng)地更改代碼。

import numpy as np
g = [[0, 0, 0.5, 0],
     [0, 0, 0.5, 1],
     [1, 0.5, 0, 0],
     [0, 0.5, 0, 0]]
g = np.array(g)
pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1
d = 0.85
for iter in range(10):
    pr = 0.15 + 0.85 * np.dot(g, pr)
    print(iter)
    print(pr)

0
[0.575 1.425 1.425 0.575]
1
[0.755625 1.244375 1.244375 0.755625]
2
[0.67885937 1.32114062 1.32114062 0.67885937]
3
[0.71148477 1.28851523 1.28851523 0.71148477]
4
[0.69761897 1.30238103 1.30238103 0.69761897]
5
[0.70351194 1.29648806 1.29648806 0.70351194]
6
[0.70100743 1.29899257 1.29899257 0.70100743]
7
[0.70207184 1.29792816 1.29792816 0.70207184]
8
[0.70161947 1.29838053 1.29838053 0.70161947]
9
[0.70181173 1.29818827 1.29818827 0.70181173]

所以 e 的權(quán)重(PageRank值)為 1.29818827。

3.TextRank原理

TextRank 和 PageTank 有什么區(qū)別呢?

簡(jiǎn)而言之 PageRank 用于網(wǎng)頁(yè)排名,TextRank 用于文本排名。 PageRank 中的網(wǎng)頁(yè)就是 TextRank 中的文本,所以基本思路是一樣的。

我們將一個(gè)文檔分成幾個(gè)句子,我們只存儲(chǔ)那些帶有特定 POS 標(biāo)簽的詞。我們使用 spaCy 進(jìn)行詞性標(biāo)注。

import spacy
nlp = spacy.load('en_core_web_sm')
content = '''
The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse.
'''
doc = nlp(content)
for sents in doc.sents:
    print(sents.text)

我們將段落分成三個(gè)句子。

The Wandering Earth, described as China’s first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China’s traditionally grand, massive historical epics.

At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking.

While the film’s cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse.

因?yàn)榫渥又械拇蟛糠衷~對(duì)確定重要性沒(méi)有用,我們只考慮帶有 NOUN、PROPN、VERB POS 標(biāo)簽的詞。這是可選的,你也可以使用所有的單詞。

candidate_pos = ['NOUN', 'PROPN', 'VERB']
sentences = []
for sent in doc.sents:
    selected_words = []
    for token in sent:
        if token.pos_ in candidate_pos and token.is_stop is False:
            selected_words.append(token)
    sentences.append(selected_words)
print(sentences)

[[Wandering, Earth, described, China, budget, science, fiction, thriller, screens, AMC, theaters, North, America, weekend, shows, filmmaking, focused, spectacles, China, epics], 
[time, Wandering, Earth, feels, throwback, eras, filmmaking], 
[film, cast, setting, tone, science, fiction, fans, going, lot, screen, reminds, movies]]

每個(gè)詞都是 PageRank 中的一個(gè)節(jié)點(diǎn)。我們將窗口大小設(shè)置為 k。

[ w 1 , w 2 , … , w k ] , [ w 2 , w 3 , … , w k + 1 ] , [ w 3 , w 4 , … , w k + 2 ] [w1, w2, …, w_k], [w2, w3, …, w_{k+1}], [w3, w4, …, w_{k+2}] [w1,w2,…,wk?],[w2,w3,…,wk+1?],[w3,w4,…,wk+2?] 是窗口。窗口中的任何兩個(gè)詞對(duì)都被認(rèn)為具有無(wú)向邊。

我們以 [time, wandering, earth, feels, throwback, era, filmmaking] 為例,設(shè)置窗口大小 k = 4 k=4 k=4,所以得到 4 個(gè)窗口,[time, Wandering, Earth, feels],[Wandering, Earth, feels, throwback],[Earth, feels, throwback, eras],[feels, throwback, eras, filmmaking]

對(duì)于窗口 [time, Wandering, Earth, feels],任何兩個(gè)詞對(duì)都有一條無(wú)向邊。所以我們得到 (time, Wandering),(time, Earth)(time, feels),(Wandering, Earth)(Wandering, feels),(Earth, feels)

基于此圖,我們可以計(jì)算每個(gè)節(jié)點(diǎn)(單詞)的權(quán)重。最重要的詞可以用作關(guān)鍵字。

4.TextRank提取關(guān)鍵詞

這里我用 Python 實(shí)現(xiàn)了一個(gè)完整的例子,我們使用 spaCy 來(lái)獲取詞的詞性標(biāo)簽。

from collections import OrderedDict
import numpy as np
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
nlp = spacy.load('en_core_web_sm')
class TextRank4Keyword():
    """Extract keywords from text"""
    def __init__(self):
        self.d = 0.85 # damping coefficient, usually is .85
        self.min_diff = 1e-5 # convergence threshold
        self.steps = 10 # iteration steps
        self.node_weight = None # save keywords and its weight
    def set_stopwords(self, stopwords):  
        """Set stop words"""
        for word in STOP_WORDS.union(set(stopwords)):
            lexeme = nlp.vocab[word]
            lexeme.is_stop = True
    def sentence_segment(self, doc, candidate_pos, lower):
        """Store those words only in cadidate_pos"""
        sentences = []
        for sent in doc.sents:
            selected_words = []
            for token in sent:
                # Store words only with cadidate POS tag
                if token.pos_ in candidate_pos and token.is_stop is False:
                    if lower is True:
                        selected_words.append(token.text.lower())
                    else:
                        selected_words.append(token.text)
            sentences.append(selected_words)
        return sentences
    def get_vocab(self, sentences):
        """Get all tokens"""
        vocab = OrderedDict()
        i = 0
        for sentence in sentences:
            for word in sentence:
                if word not in vocab:
                    vocab[word] = i
                    i += 1
        return vocab
    def get_token_pairs(self, window_size, sentences):
        """Build token_pairs from windows in sentences"""
        token_pairs = list()
        for sentence in sentences:
            for i, word in enumerate(sentence):
                for j in range(i+1, i+window_size):
                    if j >= len(sentence):
                        break
                    pair = (word, sentence[j])
                    if pair not in token_pairs:
                        token_pairs.append(pair)
        return token_pairs
    def symmetrize(self, a):
        return a + a.T - np.diag(a.diagonal())
    def get_matrix(self, vocab, token_pairs):
        """Get normalized matrix"""
        # Build matrix
        vocab_size = len(vocab)
        g = np.zeros((vocab_size, vocab_size), dtype='float')
        for word1, word2 in token_pairs:
            i, j = vocab[word1], vocab[word2]
            g[i][j] = 1
        # Get Symmeric matrix
        g = self.symmetrize(g)
        # Normalize matrix by column
        norm = np.sum(g, axis=0)
        g_norm = np.divide(g, norm, where=norm!=0) # this is ignore the 0 element in norm
        return g_norm
    def get_keywords(self, number=10):
        """Print top number keywords"""
        node_weight = OrderedDict(sorted(self.node_weight.items(), key=lambda t: t[1], reverse=True))
        for i, (key, value) in enumerate(node_weight.items()):
            print(key + ' - ' + str(value))
            if i > number:
                break
    def analyze(self, text, 
                candidate_pos=['NOUN', 'PROPN'], 
                window_size=4, lower=False, stopwords=list()):
        """Main function to analyze text"""
        # Set stop words
        self.set_stopwords(stopwords)
        # Pare text by spaCy
        doc = nlp(text)
        # Filter sentences
        sentences = self.sentence_segment(doc, candidate_pos, lower) # list of list of words
        # Build vocabulary
        vocab = self.get_vocab(sentences)
        # Get token_pairs from windows
        token_pairs = self.get_token_pairs(window_size, sentences)
        # Get normalized matrix
        g = self.get_matrix(vocab, token_pairs)
        # Initionlization for weight(pagerank value)
        pr = np.array([1] * len(vocab))
        # Iteration
        previous_pr = 0
        for epoch in range(self.steps):
            pr = (1-self.d) + self.d * np.dot(g, pr)
            if abs(previous_pr - sum(pr))  < self.min_diff:
                break
            else:
                previous_pr = sum(pr)
        # Get weight for each node
        node_weight = dict()
        for word, index in vocab.items():
            node_weight[word] = pr[index]
        self.node_weight = node_weight

這個(gè) TextRank4Keyword 實(shí)現(xiàn)了前文描述的相關(guān)功能。我們可以看到一段的輸出。

text = '''
The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse.
'''
tr4w = TextRank4Keyword()
tr4w.analyze(text, candidate_pos = ['NOUN', 'PROPN'], window_size=4, lower=False)
tr4w.get_keywords(10)

science - 1.717603106506989
fiction - 1.6952610926181002
filmmaking - 1.4388798751402918
China - 1.4259793786986021
Earth - 1.3088154732297723
tone - 1.1145002295684114
Chinese - 1.0996896235078055
Wandering - 1.0071059904601571
weekend - 1.002449354657688
America - 0.9976329264870932
budget - 0.9857269586649321
North - 0.9711240881032547

到此這篇關(guān)于Python使用TextRank算法提取關(guān)鍵詞的文章就介紹到這了,更多相關(guān)Python TextRank內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評(píng)論