欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

神經(jīng)網(wǎng)絡(luò)python源碼分享

 更新時(shí)間:2017年12月15日 15:11:30   作者:薄櫻  
這篇文章主要介紹了神經(jīng)網(wǎng)絡(luò)python源碼分享,具有一定借鑒價(jià)值,需要的朋友可以參考下。

神經(jīng)網(wǎng)絡(luò)的邏輯應(yīng)該都是熟知的了,在這里想說(shuō)明一下交叉驗(yàn)證

交叉驗(yàn)證方法:

看圖大概就能理解了,大致就是先將數(shù)據(jù)集分成K份,對(duì)這K份中每一份都取不一樣的比例數(shù)據(jù)進(jìn)行訓(xùn)練和測(cè)試。得出K個(gè)誤差,將這K個(gè)誤差平均得到最終誤差

這第一個(gè)部分是BP神經(jīng)網(wǎng)絡(luò)的建立

參數(shù)選取參照論文:基于數(shù)據(jù)挖掘技術(shù)的股價(jià)指數(shù)分析與預(yù)測(cè)研究_胡林林

import math
import random
import tushare as ts
import pandas as pd
random.seed(0)
def getData(id,start,end):
  df = ts.get_hist_data(id,start,end)
  DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
  P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
  DATA2=pd.DataFrame(columns=['R'])
  DATA['MA20']=df['ma20']
  DATA['MA5']=df['ma5']
  P=df['close']
  P1['high']=df['high']
  P1['low']=df['low']
  P1['close']=df['close']
  P1['open']=df['open']
  P1['volume']=df['volume']

  DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
  DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
  DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
  DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
  DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
  DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
  DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
  DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
  DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
  templist=(P-P.shift(1))/P.shift(1)
  tempDATA = []
  for indextemp in templist:
    tempDATA.append(1/(1+math.exp(-indextemp*100)))
  DATA['r'] = tempDATA
  DATA=DATA.dropna(axis=0)
  DATA2['R']=DATA['r']
  del DATA['r']
  DATA=DATA.T
  DATA2=DATA2.T
  DATAlist=DATA.to_dict("list")
  result = []
  for key in DATAlist:
    result.append(DATAlist[key])
  DATAlist2=DATA2.to_dict("list")
  result2 = []
  for key in DATAlist2:
    result2.append(DATAlist2[key])
  return result
def getDataR(id,start,end):
  df = ts.get_hist_data(id,start,end)
  DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
  P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
  DATA2=pd.DataFrame(columns=['R'])
  DATA['MA20']=df['ma20'].shift(1)
  DATA['MA5']=df['ma5'].shift(1)
  P=df['close']
  P1['high']=df['high']
  P1['low']=df['low']
  P1['close']=df['close']
  P1['open']=df['open']
  P1['volume']=df['volume']

  DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
  DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
  DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
  DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
  DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
  DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
  DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
  DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
  DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
  templist=(P-P.shift(1))/P.shift(1)
  tempDATA = []
  for indextemp in templist:
    tempDATA.append(1/(1+math.exp(-indextemp*100)))
  DATA['r'] = tempDATA
  DATA=DATA.dropna(axis=0)
  DATA2['R']=DATA['r']
  del DATA['r']
  DATA=DATA.T
  DATA2=DATA2.T
  DATAlist=DATA.to_dict("list")
  result = []
  for key in DATAlist:
    result.append(DATAlist[key])
  DATAlist2=DATA2.to_dict("list")
  result2 = []
  for key in DATAlist2:
    result2.append(DATAlist2[key])
  return result2
def rand(a, b):
  return (b - a) * random.random() + a
def make_matrix(m, n, fill=0.0):
  mat = []
  for i in range(m):
    mat.append([fill] * n)
  return mat
def sigmoid(x):
  return 1.0 / (1.0 + math.exp(-x))
def sigmod_derivate(x):
  return x * (1 - x)
class BPNeuralNetwork:
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    self.input_correction = []
    self.output_correction = []

  def setup(self, ni, nh, no):
    self.input_n = ni + 1
    self.hidden_n = nh
    self.output_n = no
    # init cells
    self.input_cells = [1.0] * self.input_n
    self.hidden_cells = [1.0] * self.hidden_n
    self.output_cells = [1.0] * self.output_n
    # init weights
    self.input_weights = make_matrix(self.input_n, self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n, self.output_n)
    # random activate
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2, 0.2)
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0, 2.0)
    # init correction matrix
    self.input_correction = make_matrix(self.input_n, self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n, self.output_n)

  def predict(self, inputs):
    # activate input layer
    for i in range(self.input_n - 1):
      self.input_cells[i] = inputs[i]
    # activate hidden layer
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
    # activate output layer
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total += self.hidden_cells[j] * self.output_weights[j][k]
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  def back_propagate(self, case, label, learn, correct):
    # feed forward
    self.predict(case)
    # get output layer error
    output_deltas = [0.0] * self.output_n
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o]
      output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
    # get hidden layer error
    hidden_deltas = [0.0] * self.hidden_n
    for h in range(self.hidden_n):
      error = 0.0
      for o in range(self.output_n):
        error += output_deltas[o] * self.output_weights[h][o]
      hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
    # update output weights
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o] * self.hidden_cells[h]
        self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
        self.output_correction[h][o] = change
    # update input weights
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h] * self.input_cells[i]
        self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
        self.input_correction[i][h] = change
    # get global error
    error = 0.0
    for o in range(len(label)):
      error += 0.5 * (label[o] - self.output_cells[o]) ** 2
    return error
  def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
    for i in range(limit):
      error = 0.0
      for i in range(len(cases)):
        label = labels[i]
        case = cases[i]
        error += self.back_propagate(case, label, learn, correct)
  def test(self,id):
    result=getData("000001", "2015-01-05", "2015-01-09")
    result2=getDataR("000001", "2015-01-05", "2015-01-09")
    self.setup(11, 5, 1)
    self.train(result, result2, 10000, 0.05, 0.1)
    for t in resulttest:
      print(self.predict(t))

下面是選取14-15年數(shù)據(jù)進(jìn)行訓(xùn)練,16年數(shù)據(jù)作為測(cè)試集,調(diào)倉(cāng)周期為20個(gè)交易日,大約1個(gè)月,對(duì)上證50中的股票進(jìn)行預(yù)測(cè),選取預(yù)測(cè)的漲幅前10的股票買(mǎi)入,對(duì)每只股票分配一樣的資金,初步運(yùn)行沒(méi)有問(wèn)題,但就是太慢了,等哪天有空了再運(yùn)行

import BPnet
import tushare as ts
import pandas as pd
import math
import xlrd
import datetime as dt
import time

#
#nn =BPnet.BPNeuralNetwork()
#nn.test('000001')
#for i in ts.get_sz50s()['code']:
holdList=pd.DataFrame(columns=['time','id','value'])
share=ts.get_sz50s()['code']
time2=ts.get_k_data('000001')['date']
newtime = time2[400:640]
newcount=0
for itime in newtime:
  print(itime)
  if newcount % 20 == 0:
        sharelist = pd.DataFrame(columns=['time','id','value'])
    for ishare in share:
      backwardtime = time.strftime('%Y-%m-%d',time.localtime(time.mktime(time.strptime(itime,'%Y-%m-%d'))-432000*4))
      trainData = BPnet.getData(ishare, '2014-05-22',itime)
      trainDataR = BPnet.getDataR(ishare, '2014-05-22',itime)
      testData = BPnet.getData(ishare, backwardtime,itime)
      try:
        print(testData)
        testData = testData[-1]
        print(testData)
        nn = BPnet.BPNeuralNetwork()
        nn.setup(11, 5, 1)
        nn.train(trainData, trainDataR, 10000, 0.05, 0.1)
        value = nn.predict(testData)
        newlist= pd.DataFrame({'time':itime,"id":ishare,"value":value},index=["0"])
        sharelist = sharelist.append(newlist,ignore_index=True)
      except: 
        pass
    sharelist=sharelist.sort(columns ='value',ascending=False)
    sharelist = sharelist[:10]
    holdList=holdList.append(sharelist,ignore_index=True)
  newcount+=1
  print(holdList)

總結(jié)

以上就是本文關(guān)于神經(jīng)網(wǎng)絡(luò)python源碼分享的全部?jī)?nèi)容,希望對(duì)大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站:

神經(jīng)網(wǎng)絡(luò)理論基礎(chǔ)及Python實(shí)現(xiàn)詳解

Python語(yǔ)言實(shí)現(xiàn)百度語(yǔ)音識(shí)別API的使用實(shí)例

Python通過(guò)matplotlib繪制動(dòng)畫(huà)簡(jiǎn)單實(shí)例

如有不足之處,歡迎留言指出。感謝朋友們對(duì)本站的支持!

相關(guān)文章

  • Django實(shí)現(xiàn)文件上傳下載功能

    Django實(shí)現(xiàn)文件上傳下載功能

    這篇文章主要為大家詳細(xì)介紹了Django實(shí)現(xiàn)文件上傳下載功能,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2019-10-10
  • pytorch中.to(device) 和.cuda()的區(qū)別說(shuō)明

    pytorch中.to(device) 和.cuda()的區(qū)別說(shuō)明

    這篇文章主要介紹了pytorch中.to(device) 和.cuda()的區(qū)別說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2021-05-05
  • 關(guān)于fastapi異步接口卡死的坑及解決

    關(guān)于fastapi異步接口卡死的坑及解決

    這篇文章主要介紹了關(guān)于fastapi異步接口卡死的坑及解決,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-06-06
  • 解決pycharm remote deployment 配置的問(wèn)題

    解決pycharm remote deployment 配置的問(wèn)題

    今天小編就為大家分享一篇解決pycharm remote deployment 配置的問(wèn)題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2019-06-06
  • 詳解Pandas與openpyxl庫(kù)的超強(qiáng)結(jié)合

    詳解Pandas與openpyxl庫(kù)的超強(qiáng)結(jié)合

    Pandas絕對(duì)是Python中處理Excel最快、最好用的庫(kù),但是使用 openpyxl 的一些優(yōu)勢(shì)是能夠輕松地使用樣式、條件格式等自定義電子表格,感興趣的可以了解一下
    2021-09-09
  • Python FTP操作類(lèi)代碼分享

    Python FTP操作類(lèi)代碼分享

    這篇文章主要介紹了Python FTP操作類(lèi),實(shí)現(xiàn)自動(dòng)下載、自動(dòng)上傳,并可以遞歸目錄操作,需要的朋友可以參考下
    2014-05-05
  • Python中str.format()詳解

    Python中str.format()詳解

    本文主要給大家詳細(xì)介紹的是python編程中str.format()的基本語(yǔ)法和高級(jí)用法,非常的詳細(xì),并附有示例,希望大家能夠喜歡
    2017-03-03
  • Python爬蟲(chóng)文件下載圖文教程

    Python爬蟲(chóng)文件下載圖文教程

    在本篇內(nèi)容里小編給大家分享的是關(guān)于Python爬蟲(chóng)文件下載的相關(guān)知識(shí)點(diǎn)內(nèi)容,有需要的朋友們學(xué)習(xí)下。
    2018-12-12
  • Python之列表實(shí)現(xiàn)棧的工作功能

    Python之列表實(shí)現(xiàn)棧的工作功能

    今天小編就為大家分享一篇關(guān)于Python之列表實(shí)現(xiàn)棧的工作功能,小編覺(jué)得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來(lái)看看吧
    2019-01-01
  • 淺析Python中將單詞首字母大寫(xiě)的capitalize()方法

    淺析Python中將單詞首字母大寫(xiě)的capitalize()方法

    這篇文章主要介紹了淺析Python中將單詞首字母大寫(xiě)的capitalize()方法,是Python入門(mén)中的基礎(chǔ)知識(shí),需要的朋友可以參考下
    2015-05-05

最新評(píng)論