欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python基于ID3思想的決策樹

 更新時間:2018年01月03日 10:34:52   作者:leeliyang  
這篇文章主要為大家詳細介紹了python基于ID3思想的決策樹,具有一定的參考價值,感興趣的小伙伴們可以參考一下

這是一個判斷海洋生物數(shù)據(jù)是否是魚類而構(gòu)建的基于ID3思想的決策樹,供大家參考,具體內(nèi)容如下

# coding=utf-8
import operator
from math import log
import time


def createDataSet():
  dataSet = [[1, 1, 'yes'],
        [1, 1, 'yes'],
        [1, 0, 'no'],
        [0, 1, 'no'],
        [0, 1, 'no'],
        [0,0,'maybe']]
  labels = ['no surfaceing', 'flippers']
  return dataSet, labels


# 計算香農(nóng)熵
def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for feaVec in dataSet:
    currentLabel = feaVec[-1]
    if currentLabel not in labelCounts:
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0.0
  for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)
  return shannonEnt


def splitDataSet(dataSet, axis, value):
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis + 1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet


def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1 # 因為數(shù)據(jù)集的最后一項是標簽
  baseEntropy = calcShannonEnt(dataSet)
  bestInfoGain = 0.0
  bestFeature = -1
  for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0.0
    for value in uniqueVals:
      subDataSet = splitDataSet(dataSet, i, value)
      prob = len(subDataSet) / float(len(dataSet))
      newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if infoGain > bestInfoGain:
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature


# 因為我們遞歸構(gòu)建決策樹是根據(jù)屬性的消耗進行計算的,所以可能會存在最后屬性用完了,但是分類
# 還是沒有算完,這時候就會采用多數(shù)表決的方式計算節(jié)點分類
def majorityCnt(classList):
  classCount = {}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote] = 0
    classCount[vote] += 1
  return max(classCount)


def createTree(dataSet, labels):
  classList = [example[-1] for example in dataSet]
  if classList.count(classList[0]) == len(classList): # 類別相同則停止劃分
    return classList[0]
  if len(dataSet[0]) == 1: # 所有特征已經(jīng)用完
    return majorityCnt(classList)
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel: {}}
  del (labels[bestFeat])
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    subLabels = labels[:] # 為了不改變原始列表的內(nèi)容復制了一下
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,
                                bestFeat, value), subLabels)
  return myTree


def main():
  data, label = createDataSet()
  t1 = time.clock()
  myTree = createTree(data, label)
  t2 = time.clock()
  print myTree
  print 'execute for ', t2 - t1


if __name__ == '__main__':
  main()

最后我們測試一下這個腳本即可,如果想把這個生成的決策樹用圖像畫出來,也只是在需要在腳本里面定義一個plottree的函數(shù)即可。

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評論