keras的ImageDataGenerator和flow()的用法說明
ImageDataGenerator的參數(shù)自己看文檔
from keras.preprocessing import image import numpy as np X_train=np.ones((3,123,123,1)) Y_train=np.array([[1],[2],[2]]) generator=image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=180, width_shift_range=0.2, height_shift_range=0.2, shear_range=0, zoom_range=0.001, channel_shift_range=0, fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=True, rescale=None, preprocessing_function=None, data_format='channels_last') a=generator.flow(X_train,Y_train,batch_size=20)#生成的是一個(gè)迭代器,可直接用于for循環(huán) ''' batch_size如果小于X的第一維m,next生成的多維矩陣的第一維是為batch_size,輸出是從輸入中隨機(jī)選取batch_size個(gè)數(shù)據(jù) batch_size如果大于X的第一維m,next生成的多維矩陣的第一維是m,輸出是m個(gè)數(shù)據(jù),不過順序隨機(jī) ,輸出的X,Y是一一對對應(yīng)的 如果要直接用于tf.placeholder(),要求生成的矩陣和要與tf.placeholder相匹配 ''' X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a) print(Y) X,Y=next(a)
輸出
[[2] [1] [2]] [[2] [2] [1]] [[2] [2] [1]] [[2] [2] [1]]
補(bǔ)充知識:tensorflow 與keras 混用之坑
在使用tensorflow與keras混用是model.save 是正常的但是在load_model的時(shí)候報(bào)錯(cuò)了在這里mark 一下
其中錯(cuò)誤為:TypeError: tuple indices must be integers, not list
再一一番百度后無結(jié)果,上谷歌后找到了類似的問題。但是是一對鳥文不知道什么東西(翻譯后發(fā)現(xiàn)是俄文)。后來谷歌翻譯了一下找到了解決方法。故將原始問題文章貼上來警示一下
原訓(xùn)練代碼
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense #Каталог с данными для обучения train_dir = 'train' # Каталог с данными для проверки val_dir = 'val' # Каталог с данными для тестирования test_dir = 'val' # Размеры изображения img_width, img_height = 800, 800 # Размерность тензора на основе изображения для входных данных в нейронную сеть # backend Tensorflow, channels_last input_shape = (img_width, img_height, 3) # Количество эпох epochs = 1 # Размер мини-выборки batch_size = 4 # Количество изображений для обучения nb_train_samples = 300 # Количество изображений для проверки nb_validation_samples = 25 # Количество изображений для тестирования nb_test_samples = 25 model = Sequential() model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape)) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Conv2D(64, (5, 5), padding="same")) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer="Nadam", metrics=['accuracy']) print(model.summary()) datagen = ImageDataGenerator(rescale=1. / 255) train_generator = datagen.flow_from_directory( train_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') val_generator = datagen.flow_from_directory( val_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') test_generator = datagen.flow_from_directory( test_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=nb_validation_samples // batch_size) print('Сохраняем сеть') model.save("grib.h5") print("Сохранение завершено!")
模型載入
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense from keras.models import load_model print("Загрузка сети") model = load_model("grib.h5") print("Загрузка завершена!")
報(bào)錯(cuò)
/usr/bin/python3.5 /home/disk2/py/neroset/do.py /home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. Загрузка сети Traceback (most recent call last): File "/home/disk2/py/neroset/do.py", line 13, in <module> model = load_model("grib.h5") File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model model = model_from_config(model_config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config return layer_module.deserialize(config, custom_objects=custom_objects) File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config model.add(layer) File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add output_tensor = layer(self.outputs[0]) File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__ self.build(input_shapes[0]) File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build dim = input_shape[self.axis] TypeError: tuple indices must be integers or slices, not list Process finished with exit code 1
戰(zhàn)斗種族解釋
убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(譯文:整理BatchNormalization一切正常。 不要告訴我錯(cuò)誤是什么?我發(fā)現(xiàn)保存keras和規(guī)范化tensorflow不能一起工作;只需更改導(dǎo)入字符串即可。)
強(qiáng)調(diào)文本 強(qiáng)調(diào)文本
keras.preprocessing.image import ImageDataGenerator keras.models import Sequential keras.layers import Conv2D, MaxPooling2D, BatchNormalization keras.layers import Activation, Dropout, Flatten, Dense
##完美解決
##附上原文鏈接
https://qa-help.ru/questions/keras-batchnormalization
以上這篇keras的ImageDataGenerator和flow()的用法說明就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python循環(huán)接收http請求數(shù)據(jù)方式
這篇文章主要介紹了python循環(huán)接收http請求數(shù)據(jù)方式,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-06-06Python執(zhí)行時(shí)間的計(jì)算方法小結(jié)
這篇文章主要介紹了Python執(zhí)行時(shí)間的計(jì)算方法小結(jié)的相關(guān)資料,需要的朋友可以參考下2017-03-03Python的條件語句與運(yùn)算符優(yōu)先級詳解
這篇文章主要介紹了Python的條件語句與運(yùn)算符優(yōu)先級,是Python入門學(xué)習(xí)中的基礎(chǔ)知識,需要的朋友可以參考下2015-10-10Micropython固件使用Pico刷固件并配置VsCode開發(fā)環(huán)境的方法
這篇文章主要介紹了Micropython固件使用Pico刷固件并配置VsCode開發(fā)環(huán)境的方法,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友參考下吧2021-07-07