欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

VR入門詳細教程

互聯(lián)網(wǎng)   發(fā)布時間:2008-10-04 13:41:05   作者:佚名   我要評論
3DMAX8.CN v-ray入門教程 VRay光影追蹤渲染器有Basic Package 和 Advanced Package兩種包裝形式。Basic Package具有適當?shù)墓δ芎洼^低的價格,適合學生和業(yè)余藝術(shù)家使用。Advanced Package 包含有幾種特殊功能,適用于專業(yè)人員使用。 1、建立場景,認為材質(zhì)和攝影

v-ray簡單入門(4)——材質(zhì)的制作
vray中自帶的材質(zhì)主要是vray不支持max中的raytrace材質(zhì), 它的功能與raytracee相似, vray支持raytrace貼圖, vraymap的作用與raytrace貼圖作用相同, 但是使用vraymap, 速度更快,效果更好, 特別是計算焦散. [ 材質(zhì)教程: www.dbjr.com.cn/html/cztt/czjc/ ]
金屬的制作: As for the metal material, set diffuse color to be a dark to very dark grey - VRay reflection map to almost white, say 80 - 85% white and glossiness 20 - 40 depending on how soft you want. Glossy samples should be at least 6 but 8 provides a nice smooth result with just enough noise to create a shimmery feel. I'll do tests at 4 samples just to get quicker idea. The nice thing about now being able to save irradiance maps is that testing refections and refractions is much faster.
玻璃的制作:
you can do fast, realistic thin glass just by making a transparent material with in IOR of 1 and Fresnel reflectance with an IOR of 1.6 or so - but until VRay gets itself a proper, integrated material, it won't look quite right with GI and caustics - but it doesn't do that yet anyway.
well. for architectural renderings, I've been using architecturalglass (doh!), a free s cript/material that quickly helps you make good fast rendering glass by automating the task of getting up and running those falloff maps one should use when making realistic glass. The only thing you've to do by hand (because it even has preset parameters| remember to click on faloff and shadow maps boxes to get them generated) is to change the generated raytrace map for a vray map, so it gets realistic reflections rendered. The fresnel parameter works nice with scanline, and you'd have to do the same thing with the map (change it to vray map and set it to refraction). Get it at http://www.s/ criptspot.com Works well for me
Almost, but not quite. The standard MAX material actually doesn't decrease diffuse intensity when reflect intensity is high - that's one if it's big *problems*. The Raytrace material does - a 100% reflective material has 0% diffuse intensity.
For glasses and highly reflective metals, diffuse should always be pure black - *all* the surface appearance comes from reflection/refraction. To get colourised glass/metal, you need to tint your opacity colour (change it to colour if it's on value), and your reflection colour. *Diffuse should be left at black* - lambertian shading models (aka diffuse) are *totally* f!cked up for glasswork and very reflective metal, and make it look *bad*.
Gold silver and chrome are all tinted highly reflective materials. The environment and the model shape gives the metallic look.
Water has fresnel reflectance properties, and an IOR of 1.333 - this means you need a falloff map in your reflection intensity that has an IOR of 1.333, and a material IOR of 1.333. If you are using a Vray material that should do the trick, otherwise, VRay maps standard material requires a inverted map like that for refract intensity.
While water materials can be slightly tinted, do not make the colour too blue - normally, pure water is pretty colourless stuff (your glass of water isn't bright fluorescent blue, so neither should your CG water be...).
Though for a plastic earth you might want to put a fresnel reflection in - plastics do reflect in a fresnel way, and fresnel reflections are still a great tool for realistic glass, ceramics, and plastics, they just aren't really for metals... so that earth globe might look even nicer with an IOR 2 or 3 fresnel falloff on its blurry reflections...
704.10 in reply to 704.9
Q: For the fast glass you were talking about, should I use vray material, vray map, or just fallof map with a standard shader.
A: Vray material is best, if you can. It is by far the most painless route. For various reasons, you may need to use other techniques - I will explain those
- If it's a standard shader, what kind would you recommend, wich colors for the faloff map, how much of reflection, should i use other maps such as opacity or refraction? (considering a medium blue tinted glass panel), is it possible to get this shader work as a mirror when it has to (don't know much about physics, guess when you look at certain angles)
There are 3 things you can do:
1) VRay material. As I said, this is the best option. Basically, start with a plain vanilla VRay material, make the diffuse colour black, and any specular stuff turned off, set the VRay material's IOR to 1, then drop a falloff map in your reflect slot. Set the falloff map to not use material IOR (though I don't think it does by default), and set the *falloff* IOR to 1.6.
Bingo, working phyisically realistic material. It should look great when you stick it onto your planar glass, as long as your glass is in an interesting environment and so forth
2) Standard VRay map. A little harder, but not too much more. Start with a plain vanilla Standard material, then set diffuse and specular to 0 - this should look completely flat black. Set material IOR to 1. Set a VRay map in the Reflect slot, should be set on reflect already, but if not, do. Set a VRay map in the Refract slot, set to refract. Set filter map in the Reflect one to Fresnel, IOR 1.6. Set filter map in Refract one to Fresnel IOR 1.6 (but not the same map), then swap the black for white and vice versa. Voila! Problem solved.
3) You can use a standard map with fresnel falloff and some kind of reflection map in the white slot if you don't need raytracing. This is a lame cheat, looks bad, and there is no reason for it if you have VRay except in exceptional circimstances.
This should make your planes look like glass - note that the reflections on glass are pretty damn subtle - that's why we use the stuff as windows - you can see through it. So it can be hard to see - a lot of what looks "glassy" is really the distorted refractions, and bumps in the glass - even in a pane of glass, the stuff at the edge refracts in more interesting ways. Trouble is, with this technique, bumps only affect the reflected component, when you really want the refraction getting bumped a bit.
Anyway, you may find the subtlety of the reflections is too high, so feel free to change IORs around and stuff - basically, it should act like realistic, ultra thin glass, but that may not look glassy or right for your situation - so stuff around for what works. Maybe use perpendicular maps instead of fresnel (though that is not really realistic at all, technically), or a IOR of 3 or 4 in your slot.
- and last but not least, is it faster/better to use a 3DFACE to represent those glass panels. would the recommendations change then??
I don't know quite what you mean by this - do you mean a box instead of a plane? Using boxes instead of planes is more realistic but slower. If you use a box instead of a plane, make sure you set your *material* IOR to 1.6 or so instead of 1, but otherwise, it's all the same. Usually the planes-with-1 looks much the same as box-with-1.6, but if you want bumpy refractions (reflections work on both), or need the extra realism, use the boxes - general idea is, try both, use the fastest one that looks right
PD: If someone wants to help sending his glass material would be great!
Droogy has a really good glass material around somewhere - but I'm not sure quite where, I'm afraid... it's a realistic glass material, along the lines of this one, but prepackaged, and it's got a main of 1.6 or something, not 1 (which is the cheat matl IOR). Only difference between cheat matl and accurate one is the material IOR (the fresnel IORs are all the same)...
For tinted glass, exactly the same material, but for all the falloffs in the filter sections of the VRay material (you know, the fresnel things), both the reflect and refract map, set the white colour patch to whatever colour you want your glass tinted to. This is the same for the cheat and the accurate material, but since in the accurate version, it goes through 2 layers of glass, your tint will look darker and stronger than in the fake thin glass one.
I'm afraid I'm writing this in a hurry with a headache, so it's probably a little incoherent, but I hope it clears things up - sorry that I haven't posted any matlibs, but I'm away from MAX right now... and it has an out of date VRay version anyway - I had a lot of stuff keeping me off it, and I've been doing more in the way of general scene building than renders...
Hope this clears things up, and good luck with the architectural stuff. I'm sorry I've neglected to really cover the theory (i.e. why the hell do I need to do that? What's up with the fresnel stuff), but you don't need it for using a canned glass material, and I will be working on the theory side of things - wait and see
Yes - since windows bend light rays back to basically their original path, there is minimal distortion when light goes through them.
The way to approximate this (and get fast rendertimes with minimal impact) is to make a glass material as per normal, ensuring your fresnel falloff map does *not* have the "use material IOR thing" or whatever it's called checked, set that to 1.6 or your preferred fresnel value, then set your material IOR to 1 - this tells it to pass light rays through unbent, while preserving the classic fresnel reflectance properties of glass. Then map all this to a plane (not a box, the standard for other glass, as this approximation simulates what happens when going through 2 layers (box) with one (plane)).
Voila! Realistic, fast, flat glass. There are only 2 caveats with this technique:
1) If you get close to the glass, it looks wrong - with real glass, you have thickness, and effects at the edges of the windowpane and with increased distortion at glancing angles make real glass look fairly different close to.
2) There are some other optical things going on in glass windows that are not simulated in this approximation - most notably it doesn't deal with the fact that both layers of glass spawn reflections, and the total internal reflection you get at some angles.
Nevertheless, for distant or medium range glass, this approximation is visually indistinguishable to full blown glass, and the section of your rendertime due to glass objects will be very substantially reduced - because not only do you have half the geometric complexity at each pane, you cut down a lot on recursive reflections between glass layers etc. - and while this has a minor effect on appearance, it still looks right.
Try using a VRay 2-sided material with IOR set to 1.0, Reflect on back side turned on, and optionally, a Falloff map in the Reflect slot.
The material needs to be 2-sided so that diffuse light shows both on front- and back-facing surfaces.
You need to set the IOR to 1.0 to make the glass to be merely transparent, and not refractive, and also to make the refractions symmetrical no matter if you are looking at the surface from the front side, or the back side.
You need to check the "Reflect on back side" so that reflections will be caclulated both for front- and back-facing surfaces.
Finally, you may need the Falloff map in the Reflect slot, because with IOR of 1.0 VRay's Fresnel reflection will do nothing.
A problem you may get with this is that the shadows from lights will not be transparent. You can solve this in two ways - exclude the glass from shadow-casting for your lights; or use caustics. I realize this is not very practical, so there will be a workaround for this soon. The picture below uses caustics.
As a side note, you may extrude the glass for your project only by doubling the amount of faces - you don't need the four sides of the glass (assuming you have frames around it). Then you can use a Standard transparent material with VRay map in the refelction slot. Furhter on, 1.3 mln faces are not that much - VRay should be able to handle them

相關(guān)文章

最新評論